Chemocatalytic Oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic Acid Over Nickel Cobalt Oxide

被引:2
|
作者
Prasad, Shivshankar [1 ]
Kumar, Ajay [1 ]
Dutta, Suman [1 ]
Ahmad, Ejaz [1 ]
机构
[1] Indian Inst Technol, Indian Sch Mines, Dept Chem Engn, GreenCat Lab, Dhanbad 826004, India
关键词
2,5-furandicarboxylic acid; 5-hydroxymethylfurfural; Lattice oxygen; Oxygen mobility; Tert-butyl hydroperoxide; SELECTIVE AEROBIC OXIDATION; CATALYSTS; SUPPORT; BASE; MICROWAVE; BIOMASS; PHASE;
D O I
10.1002/cctc.202400973
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present study reports the synthesis, characterization, and application of NiCo bimetallic catalysts to produce 2,5-furandicarboxylic acid (FDCA) via the oxidation of bio-renewable 5-hydroxymethylfurfural (HMF). FDCA is a biopolymer precursor and a potential replacement for terephthalic acid (TPA). The catalysts were synthesized via the co-precipitation method in different molar ratios of NiCo, followed by calcination in a muffle furnace. As a result, the complete conversion of HMF and a maximum 84.89 % FDCA yield was measured at 50 degrees C in 50 minutes in the presence of NiCo(3 : 1) catalyst. In addition, effect reaction parameters, including catalyst amount, temperature, time, base, and oxidant amount on the FDCA yield, were studied, and the process was optimized. The NiCo(3 : 1) catalyst showed a negligible loss in activity for at least five cycles. The higher catalytic activity and stability are attributed to the synergistic effect of bimetallic catalysts, such as higher lattice oxygen. Accordingly, the catalyst was characterized using BET, XRD, H2-TPR, CO2-TPD, HR-TEM, and XPS to correlate their properties and activity. The reaction products were analyzed quantitatively using HPLC and qualitatively using HR-MS. The oxidation reaction of 5-hydroxymethylfurfural has been carried out using bimetallic nickel cobalt catalyst to produce into 2,5-furandicarboxylic acid (FDCA). It is observed that higher lattice oxygen and oxygen mobility of bimetallic catalysts are responsible for better FDCA yield. Maximum 84.9 % FDCA yield is measured using NiCo (3 : 1) catalyst and tert-butyl hydroperoxide oxidant at 50 degrees C in 50 minutes. image
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Zheng, Lufan
    Zhao, Junqi
    Du, Zexue
    Zong, Baoning
    Liu, Haichao
    SCIENCE CHINA-CHEMISTRY, 2017, 60 (07) : 950 - 957
  • [22] Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over MnOx-CeO2 composite catalysts
    Han, Xuewang
    Li, Chaoqun
    Liu, Xiaohui
    Xia, Qineng
    Wang, Yanqin
    GREEN CHEMISTRY, 2017, 19 (04) : 996 - 1004
  • [23] Improved Performance of Nickel Boride by Phosphorus Doping as an Efficient Electrocatalyst for the Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Song, Xiaojie
    Liu, Xiaohui
    Wang, Haifeng
    Guo, Yong
    Wang, Yanqin
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (39) : 17348 - 17356
  • [24] Oxygen vacancy boosted oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over CuCoOx
    Jiang, Wei
    Wang, Dongjun
    Deng, Xunliang
    Gao, Yuxin
    Wang, Weizong
    Ge, Tengjie
    Zhao, Chengkang
    Sun, Yong
    MOLECULAR CATALYSIS, 2024, 556
  • [25] Simulation and economic analysis of 5-hydroxymethylfurfural conversion to 2,5-furandicarboxylic acid
    Triebl, Christoph
    Nikolakis, Vladimiros
    Ierapetritou, Marianthi
    COMPUTERS & CHEMICAL ENGINEERING, 2013, 52 : 26 - 34
  • [26] Current Advances in the Sustainable Conversion of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid
    Totaro, Grazia
    Sisti, Laura
    Marchese, Paola
    Colonna, Martino
    Romano, Angela
    Gioia, Claudio
    Vannini, Micaela
    Celli, Annamaria
    CHEMSUSCHEM, 2022, 15 (13)
  • [27] 5-Hydroxymethylfurfural Oxidation to 2,5-Furandicarboxylic Acid on Noble Metal-Free Nanocrystalline Mixed Oxide Catalysts
    Demet, Atif Emre
    Gimello, Olinda
    Arletti, Rossella
    Tanchoux, Nathalie
    Sougrati, Moulay Tahar
    Stievano, Lorenzo
    Quignard, Francoise
    Centi, Gabriele
    Perathoner, Siglinda
    Di Renzo, Francesco
    CATALYSTS, 2022, 12 (08)
  • [28] Aerobic Oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid over Gold Stabilized on Zirconia-Based Supports
    Rabee, Abdallah I. M.
    Le, Son Dinh
    Higashimine, Koichi
    Nishimura, Shun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (18): : 7150 - 7161
  • [29] Facile Production of 2,5-Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5-Hydroxymethylfurfural
    Zuo, Xiaobin
    Venkitasubramanian, Padmesh
    Martin, Kevin J.
    Subramaniam, Bala
    CHEMSUSCHEM, 2022, 15 (13)
  • [30] Advances in the Energy-Saving Electro-Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Ren, Yujie
    Fan, Shilin
    Yu, Xiao
    Shi, Shaoqi
    Wang, Jinggang
    Zeng, Jia
    Zhang, Jian
    Chen, Chunlin
    ADVANCED SUSTAINABLE SYSTEMS, 2025,