On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts

被引:340
|
作者
Davis, Sara E. [1 ]
Zope, Bhushan N. [1 ]
Davis, Robert J. [1 ]
机构
[1] Univ Virginia, Dept Chem Engn, Charlottesville, VA 22904 USA
基金
美国国家科学基金会; 美国能源部;
关键词
AEROBIC OXIDATION; GOLD; CHEMICALS; BIOMASS;
D O I
10.1039/c1gc16074e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The mechanism of selective oxidation of aqueous 5-hydroxymethylfurfural (HMF) at high pH was studied over supported Pt and Au catalysts. Results from labeling experiments conducted with O-18(2) and (H2O)-O-18 indicated that water was the source of oxygen atoms during the oxidation of HMF to 2-hydroxymethylfurancarboxylic acid (HFCA) and 2,5-furandicarboxylic acid (FDCA), presumably through direct participation of hydroxide in the catalytic cycle. Molecular oxygen was essential for the production of FDCA and played an indirect role during oxidation by removing electrons deposited into the supported metal particles. A reaction path for HMF oxidation to FDCA was proposed.
引用
收藏
页码:143 / 147
页数:5
相关论文
共 50 条
  • [1] Effect of Ag Addition to Au Catalysts for the Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    de Boed, Ewoud J. J.
    Nolten, Hidde L.
    Masoud, Nazila
    Vogel, Robin
    Wang, Fei
    Xu, Zhuoran
    Doskocil, Eric J.
    Donoeva, Baira
    de Jongh, Petra E.
    [J]. CHEMCATCHEM, 2024, 16 (12)
  • [2] Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over MnOx-CeO2 composite catalysts
    Han, Xuewang
    Li, Chaoqun
    Liu, Xiaohui
    Xia, Qineng
    Wang, Yanqin
    [J]. GREEN CHEMISTRY, 2017, 19 (04) : 996 - 1004
  • [3] Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles
    Chadderdon, David J.
    Xin, Le
    Qi, Ji
    Qiu, Yang
    Krishna, Phani
    More, Karren L.
    Li, Wenzhen
    [J]. GREEN CHEMISTRY, 2014, 16 (08) : 3778 - 3786
  • [4] Mechanism Insights into the Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over MnO2 Catalysts
    Yao, Yi-Fan
    Wang, Gui-Chang
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (07): : 3818 - 3826
  • [5] Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au/CeO2 catalysts: the morphology effect of CeO2+
    Li, Qingqing
    Wang, Haiyong
    Tian, Zhipeng
    Weng, Yujing
    Wang, Chenguang
    Ma, Jianru
    Zhu, Chaofeng
    Li, Wenzhi
    Liu, Qiying
    Ma, Longlong
    [J]. CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (07) : 1570 - 1580
  • [6] 2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural: Catalysts, processes and reaction mechanism
    Chen, Chunlin
    Wang, Lingchen
    Zhu, Bin
    Zhou, Zhenqiang
    El-Hout, Soliman, I
    Yang, Jie
    Zhang, Jian
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2021, 54 : 528 - 554
  • [7] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Lufan Zheng
    Junqi Zhao
    Zexue Du
    Baoning Zong
    Haichao Liu
    [J]. Science China(Chemistry)., 2017, 60 (07) - 957
  • [8] Enhanced Basicity of MnOx-Supported Ru for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Pal, Priyanka
    Saravanamurugan, Shunmugavel
    [J]. CHEMSUSCHEM, 2022, 15 (17)
  • [9] Continuous Flow Synthesis of Bimetallic AuPd Catalysts for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Cattaneo, Stefano
    Bonincontro, Danilo
    Bere, Takudzwa
    Kiely, Christopher J.
    Hutchings, Graham J.
    Dimitratos, Nikolaos
    Albonetti, Stefania
    [J]. CHEMNANOMAT, 2020, 6 (03) : 420 - 426
  • [10] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Lufan Zheng
    Junqi Zhao
    Zexue Du
    Baoning Zong
    Haichao Liu
    [J]. Science China Chemistry, 2017, (07) : 950 - 957