Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts

被引:0
|
作者
Lufan Zheng [1 ]
Junqi Zhao [1 ]
Zexue Du [1 ]
Baoning Zong [1 ]
Haichao Liu [2 ]
机构
[1] Research Institute of Petroleum Processing,SINOPEC
[2] Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Stable and Unstable Species,College of Chemistry and Molecular Engineering, Peking University
基金
中国国家自然科学基金;
关键词
aerobic oxidation; 5-hydromethylfurfural; 2,5-furandicarboxylic; supported Ru catalyst; base additives; reaction mechanism;
D O I
暂无
中图分类号
O643.36 [催化剂];
学科分类号
081705 ;
摘要
2,5-Furandicarboxylic(FDCA) is a potential substitute for petroleum-derived terephthalic acid, and aerobic oxidation of5-hydroxymethylfurfural(HMF) provides an efficient route to synthesis of FDCA. On an activated carbon supported ruthenium(Ru/C) catalyst(with 5 wt% Ru loading), HMF was readily oxidized to FDCA in a high yield of 97.3% at 383 K and 1.0 MPa O;in the presence of Mg(OH);as base additive. Ru/C was superior to Pt/C and Pd/C and also other supported Ru catalysts with similar sizes of metal nanoparticles(1–2 nm). The Ru/C catalysts were stable and recyclable, and their efficiency in the formation of FDCA increased with Ru loadings examined in the range of 0.5 wt%–5.0 wt%. Based on the kinetic studies including the effects of reaction time, reaction temperature, O;pressure, on the oxidation of HMF to FDCA on Ru/C, it was confirmed that the oxidation of HMF to FDCA proceeds involving the primary oxidation of HMF to 2,5-diformylfuran(DFF) intermediate, and its sequential oxidation to 5-formyl-2-furancarboxylic acid(FFCA) and ultimately to FDCA, in which the oxidation of FFCA to FDCA is the rate-determining step and dictates the overall formation rate of FDCA. This study provides directions towards efficient synthesis of FDCA from HMF, for example, by designing novel catalysts more efficient for the involved oxidation step of FFCA to FDCA.
引用
收藏
页码:950 / 957
页数:8
相关论文
共 50 条
  • [1] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Lufan Zheng
    Junqi Zhao
    Zexue Du
    Baoning Zong
    Haichao Liu
    [J]. Science China(Chemistry)., 2017, 60 (07) - 957
  • [2] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Zheng, Lufan
    Zhao, Junqi
    Du, Zexue
    Zong, Baoning
    Liu, Haichao
    [J]. SCIENCE CHINA-CHEMISTRY, 2017, 60 (07) : 950 - 957
  • [3] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Lufan Zheng
    Junqi Zhao
    Zexue Du
    Baoning Zong
    Haichao Liu
    [J]. Science China Chemistry, 2017, 60 : 950 - 957
  • [4] Ru/MgO-catalysed selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Lokhande, Priya
    Dhepe, Paresh L.
    Wilson, Karen
    Lee, Adam F.
    [J]. Australian Journal of Chemistry, 2024, 77 (10)
  • [5] Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions
    Liu, Bing
    Ren, Yongshen
    Zhang, Zehui
    [J]. GREEN CHEMISTRY, 2015, 17 (03) : 1610 - 1617
  • [6] Mechanism Insights into the Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over MnO2 Catalysts
    Yao, Yi-Fan
    Wang, Gui-Chang
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (07): : 3818 - 3826
  • [7] Effect of Ag Addition to Au Catalysts for the Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    de Boed, Ewoud J. J.
    Nolten, Hidde L.
    Masoud, Nazila
    Vogel, Robin
    Wang, Fei
    Xu, Zhuoran
    Doskocil, Eric J.
    Donoeva, Baira
    de Jongh, Petra E.
    [J]. CHEMCATCHEM, 2024, 16 (12)
  • [8] A new approach for the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid without using transition metal catalysts
    Zhang, Lu
    Luo, Xiaolan
    Li, Yebo
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (01) : 243 - 249
  • [9] Recent Advances in Electrocatalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Heterogeneous Catalysts
    Ma, Zhiming
    Wang, Lei
    Li, Guangyu
    Song, Tao
    [J]. CATALYSTS, 2024, 14 (02)
  • [10] A new approach for the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid without using transition metal catalysts
    Lu Zhang
    Xiaolan Luo
    Yebo Li
    [J]. Journal of Energy Chemistry, 2018, (01) : 243 - 249