Bidirectional S-bridge coordination in the magnetic Au/FeOxSy catalyst for the catalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid

被引:0
|
作者
Ruan, Yu [1 ]
Wu, Shaoyi [1 ]
Lu, Yingxin [1 ]
Xu, Tiefeng [1 ,2 ]
Chen, Wenxing [1 ,2 ]
Lu, Wangyang [1 ,2 ]
机构
[1] Zhejiang Sci Tech Univ, State Key Lab Biobased Fiber Mat, Hangzhou 310018, Peoples R China
[2] Zhejiang Prov Innovat Ctr Adv Text Technol, Shaoxing 312000, Peoples R China
关键词
SELECTIVE OXIDATION; AEROBIC OXIDATION; OXIDE; ADSORPTION; CHEMICALS; AU; PD;
D O I
10.1039/d4ta09277e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) is a promising approach for producing renewable biodegradable plastics. However, thus far, the development of catalytic oxidation processes operating under mild conditions and the design of highly stable catalysts have been challenging. Herein, the magnetic catalyst Au/FeOxSy was synthesised by doping S into the Fe/Au bimetallic structure. The reaction was conducted in water at 60 degrees C under air and atmospheric pressure, achieving 100% conversion of HMF and a FDCA yield of 98.5%. The catalytic performance of S-doping Au/FeOx was 4.73 times greater than that of undoped Au/FeOx under the same conditions. Furthermore, the catalyst demonstrated excellent cycling stability, with the FDCA yield maintained above 93% after at least 30 cycles. The introduction of S altered the electronic configuration of Au through the formation of Au-S bonds, thereby enhancing electron mobility and catalytic activity. Additionally, the interaction of S with FeOx led to the formation of Fe-O-S bonds, which fortified the structure of the catalyst and ensured prolonged cycling stability. Thus, this study effectively converted HMF to FDCA under mild conditions through S incorporation, offering a novel approach for preparing metal catalysts and laying a robust foundation for utilising FDCA as a sustainable alternative to terephthalic acid in bio-based polyester production.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Electrocatalytic Oxidation of 5-Hydroxymethylfurfural into the Monomer 2,5-Furandicarboxylic Acid using Mesostructured Nickel Oxide
    Holzhaeuser, Fabian Joschka
    Janke, Tobias
    Oeztas, Fatma
    Broicher, Cornelia
    Palkovits, Regina
    ADVANCED SUSTAINABLE SYSTEMS, 2020, 4 (10)
  • [32] Purification of Biomass-Derived 5-Hydroxymethylfurfural and Its Catalytic Conversion to 2,5-Furandicarboxylic Acid
    Yi, Guangshun
    Teong, Siew Ping
    Li, Xiukai
    Zhang, Yugen
    CHEMSUSCHEM, 2014, 7 (08) : 2131 - 2135
  • [33] Highly Efficient Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with Heteropoly Acids and Ionic Liquids
    Chen, Ruru
    Xin, Jiayu
    Yan, Dongxia
    Dong, Huixian
    Lu, Xingmei
    Zhang, Suojiang
    CHEMSUSCHEM, 2019, 12 (12) : 2715 - 2724
  • [34] A novel platinum nanocatalyst for the oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions
    Siankevich, Sviatlana
    Savoglidis, Georgios
    Fei, Zhaofu
    Laurenczy, Gabor
    Alexander, Duncan T. L.
    Yan, Ning
    Dyson, Paul J.
    JOURNAL OF CATALYSIS, 2014, 315 : 67 - 74
  • [35] Liquid-Phase Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Co/Mn/Br Catalyst
    Chen, Shuaibo
    Cheng, Youwei
    Ban, Heng
    Zhang, Youdi
    Zheng, Liping
    Wang, Lijun
    Li, Xi
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (39) : 17076 - 17084
  • [36] Ru/MgO-catalysed selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Lokhande, Priya
    Dhepe, Paresh L.
    Wilson, Karen
    Lee, Adam F.
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2024, 77 (10)
  • [37] Reaction Mechanism and Kinetics of the Liquid-Phase Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Chen, Shuaibo
    Guo, Xusheng
    Ban, Heng
    Pan, Teng
    Zheng, Liping
    Cheng, Youwei
    Wang, Lijun
    Li, Xi
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (47) : 16887 - 16898
  • [38] A highly efficient and reusable Ru-NaY catalyst for the base free oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic acid
    Kandasamy, Prabu
    Gogoi, Pranjal
    Venugopalan, Aswathy Thareparambil
    Raja, Thirumalaiswamy
    CATALYSIS TODAY, 2021, 375 (375) : 145 - 154
  • [39] A Facile Synthesis Route to AuPd Alloys for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Peng, Yani
    Qiu, Boya
    Ding, Shengzhe
    Hu, Min
    Zhang, Yuxin
    Jiao, Yilai
    Fan, Xiaolei
    Parlett, Christopher M. A.
    CHEMPLUSCHEM, 2024, 89 (01):
  • [40] Quantitative Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by TEMPO in a Single Aqueous Phase under Mild Conditions
    Chen, Xiang
    Li, Hao
    Lu, Yichao
    Liu, Zhichun
    Ma, Zhongsen
    Zhang, Yajie
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2025, 13 (10): : 4242 - 4251