Dual in-memory computing of matrix-vector multiplication for accelerating neural networks

被引:0
|
作者
Wang, Shiqing [1 ]
Sun, Zhong [1 ]
机构
[1] Peking Univ, Inst Artificial Intelligence, Sch Integrated Circuits, Beijing Adv Innovat Ctr Integrated Circuits, Beijing 100871, Peoples R China
来源
DEVICE | 2024年 / 2卷 / 12期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
MACRO; CMOS; CHIP;
D O I
10.1016/j.device.2024.100546
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In-memory computing (IMC) aims to solve the von Neumann bottleneck by performing computations in the memory unit. However, the conventional IMC scheme only partially solves this issue, and it causes a digital- to-analog conversion overhead in performing analog matrix-vector multiplication (MVM). Here, we develop a dual-IMC scheme, which implies that both the weight and input of a neural network are stored in the memory array. The scheme performs MVM operations in a fully in-memory manner, eliminating the need for data transfer. We have tested our proof of concept by fabricating resistive random-access memory (RRAM) devices using semiconductor processes to experimentally demonstrate dual-IMC for signal recovery and image processing. Evaluations show that it achieves 3-4 orders of magnitude of improvement in the energy efficiency of MVM.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A Method of Zero/One Matrix-Vector Multiplication
    Yu, Li
    Liu, Xia
    Chen, Ang
    Li, Yuan-Xiang
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL III: MODELLING AND SIMULATION IN ELECTRONICS, COMPUTING, AND BIO-MEDICINE, 2008, : 95 - 99
  • [42] AN EFFICIENT PARALLEL ALGORITHM FOR MATRIX-VECTOR MULTIPLICATION
    HENDRICKSON, B
    LELAND, R
    PLIMPTON, S
    INTERNATIONAL JOURNAL OF HIGH SPEED COMPUTING, 1995, 7 (01): : 73 - 88
  • [43] STRUCTURED SPARSE MATRIX-VECTOR MULTIPLICATION ON A MASPAR
    DEHN, T
    EIERMANN, M
    GIEBERMANN, K
    SPERLING, V
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1994, 74 (06): : T534 - T538
  • [44] GPU accelerated sparse matrix-vector multiplication and sparse matrix-transpose vector multiplication
    Tao, Yuan
    Deng, Yangdong
    Mu, Shuai
    Zhang, Zhenzhong
    Zhu, Mingfa
    Xiao, Limin
    Ruan, Li
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (14): : 3771 - 3789
  • [45] The Mailman algorithm: A note on matrix-vector multiplication
    Liberty, Edo
    Zucker, Steven W.
    INFORMATION PROCESSING LETTERS, 2009, 109 (03) : 179 - 182
  • [46] Performance Aspects of Sparse Matrix-Vector Multiplication
    Simecek, I.
    ACTA POLYTECHNICA, 2006, 46 (03) : 3 - 8
  • [47] A REUSABLE SYSTOLIC ARRAY FOR MATRIX-VECTOR MULTIPLICATION
    EVANS, DJ
    MARGARITIS, KG
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1991, 41 (1-2) : 19 - 30
  • [48] DENSE MATRIX-VECTOR MULTIPLICATION ON THE CUDA ARCHITECTURE
    Fujimoto, Noriyuki
    PARALLEL PROCESSING LETTERS, 2008, 18 (04) : 511 - 530
  • [49] Efficient dense matrix-vector multiplication on GPU
    He, Guixia
    Gao, Jiaquan
    Wang, Jun
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2018, 30 (19):
  • [50] A quantum algorithm for Toeplitz matrix-vector multiplication
    Gao, Shang
    Yang, Yu-Guang
    CHINESE PHYSICS B, 2023, 32 (10)