Dual in-memory computing of matrix-vector multiplication for accelerating neural networks

被引:0
|
作者
Wang, Shiqing [1 ]
Sun, Zhong [1 ]
机构
[1] Peking Univ, Inst Artificial Intelligence, Sch Integrated Circuits, Beijing Adv Innovat Ctr Integrated Circuits, Beijing 100871, Peoples R China
来源
DEVICE | 2024年 / 2卷 / 12期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
MACRO; CMOS; CHIP;
D O I
10.1016/j.device.2024.100546
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In-memory computing (IMC) aims to solve the von Neumann bottleneck by performing computations in the memory unit. However, the conventional IMC scheme only partially solves this issue, and it causes a digital- to-analog conversion overhead in performing analog matrix-vector multiplication (MVM). Here, we develop a dual-IMC scheme, which implies that both the weight and input of a neural network are stored in the memory array. The scheme performs MVM operations in a fully in-memory manner, eliminating the need for data transfer. We have tested our proof of concept by fabricating resistive random-access memory (RRAM) devices using semiconductor processes to experimentally demonstrate dual-IMC for signal recovery and image processing. Evaluations show that it achieves 3-4 orders of magnitude of improvement in the energy efficiency of MVM.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Sparse Matrix-Vector Multiplication with Reduced-Precision Memory Accessor
    Mukunoki, Daichi
    Kawai, Masatoshi
    Imamura, Toshiyuki
    2023 IEEE 16TH INTERNATIONAL SYMPOSIUM ON EMBEDDED MULTICORE/MANY-CORE SYSTEMS-ON-CHIP, MCSOC, 2023, : 608 - 615
  • [22] A High Memory Bandwidth FPGA Accelerator for Sparse Matrix-Vector Multiplication
    Fowers, Jeremy
    Ovtcharov, Kalin
    Strauss, Karin
    Chung, Eric S.
    Stitt, Greg
    2014 IEEE 22ND ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM 2014), 2014, : 36 - 43
  • [23] An Efficient Sparse Matrix-Vector Multiplication on Distributed Memory Parallel Computers
    Shahnaz, Rukhsana
    Usman, Anila
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2007, 7 (01): : 77 - 82
  • [24] Optimising Memory Bandwidth Use for Matrix-Vector Multiplication in Iterative Methods
    Boland, David
    Constantinides, George A.
    RECONFIGURABLE COMPUTING: ARCHITECTURES, TOOLS AND APPLICATIONS, 2010, 5992 : 169 - 181
  • [25] Experimental Assessment of Multilevel RRAM-Based Vector-Matrix Multiplication Operations for In-Memory Computing
    Quesada, Emilio Perez-Bosch
    Mahadevaiah, Mamathamba Kalishettyhalli
    Rizzi, Tommaso
    Wen, Jianan
    Ulbricht, Markus
    Krstic, Milos
    Wenger, Christian
    Perez, Eduardo
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (04) : 2009 - 2014
  • [26] Inverse-Designed Photonic Computing Core for Parallel Matrix-Vector Multiplication
    Wang, Kaiyuan
    Li, Yunlong
    Zhou, Qihui
    Liu, Deming
    Zheng, Shuang
    Zhang, Minming
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (22) : 8061 - 8071
  • [27] MATRIX-VECTOR MULTIPLICATION USING DIGITAL PARTITIONING FOR MORE ACCURATE OPTICAL COMPUTING
    GARY, CK
    APPLIED OPTICS, 1992, 31 (29): : 6205 - 6211
  • [28] Vector ISA extension for sparse matrix-vector multiplication
    Vassiliadis, S
    Cotofana, S
    Stathis, P
    EURO-PAR'99: PARALLEL PROCESSING, 1999, 1685 : 708 - 715
  • [29] "In-memory Computing": Accelerating AI Applications
    Eleftheriou, Evangelos
    ESSCIRC 2018 - IEEE 44TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC), 2018, : 4 - 5
  • [30] Leveraging Memory Copy Overlap for Efficient Sparse Matrix-Vector Multiplication on GPUs
    Zeng, Guangsen
    Zou, Yi
    ELECTRONICS, 2023, 12 (17)