Dual in-memory computing of matrix-vector multiplication for accelerating neural networks

被引:0
|
作者
Wang, Shiqing [1 ]
Sun, Zhong [1 ]
机构
[1] Peking Univ, Inst Artificial Intelligence, Sch Integrated Circuits, Beijing Adv Innovat Ctr Integrated Circuits, Beijing 100871, Peoples R China
来源
DEVICE | 2024年 / 2卷 / 12期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
MACRO; CMOS; CHIP;
D O I
10.1016/j.device.2024.100546
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In-memory computing (IMC) aims to solve the von Neumann bottleneck by performing computations in the memory unit. However, the conventional IMC scheme only partially solves this issue, and it causes a digital- to-analog conversion overhead in performing analog matrix-vector multiplication (MVM). Here, we develop a dual-IMC scheme, which implies that both the weight and input of a neural network are stored in the memory array. The scheme performs MVM operations in a fully in-memory manner, eliminating the need for data transfer. We have tested our proof of concept by fabricating resistive random-access memory (RRAM) devices using semiconductor processes to experimentally demonstrate dual-IMC for signal recovery and image processing. Evaluations show that it achieves 3-4 orders of magnitude of improvement in the energy efficiency of MVM.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Optimizing Memory Bandwidth Use and Performance for Matrix-Vector Multiplication in Iterative Methods
    Boland, David
    Constantinides, George A.
    ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS, 2011, 4 (03)
  • [32] "In-memory Computing": Accelerating AI Applications
    Eleftheriou, Evangelos
    2018 48TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), 2018, : 4 - 5
  • [33] Adaptive Wavelet Methods - Matrix-Vector Multiplication
    Cerna, Dana
    Finek, Vaclav
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009 (ICCMSE 2009), 2012, 1504 : 832 - 836
  • [34] FAST MULTIRESOLUTION ALGORITHMS FOR MATRIX-VECTOR MULTIPLICATION
    HARTEN, A
    YADSHALOM, I
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) : 1191 - 1218
  • [35] Matrix-Vector Multiplication in Adaptive Wavelet Methods
    Cerna, Dana
    Finek, Vaclav
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'11): PROCEEDINGS OF THE 37TH INTERNATIONAL CONFERENCE, 2011, 1410
  • [36] REALIZATION OF DIGITAL OPTICAL MATRIX-VECTOR MULTIPLICATION
    BANDYOPADHYAY, S
    DATTA, AK
    BAWA, SS
    BIRADAR, AM
    CHANDRA, S
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1995, 28 (01) : 7 - 11
  • [37] Sparse matrix-vector multiplication design on FPGAs
    Sun, Junqing
    Peterson, Gregory
    Storaasli, Olaf
    FCCM 2007: 15TH ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, PROCEEDINGS, 2007, : 349 - +
  • [38] Sparse Matrix-Vector Multiplication on a Reconfigurable Supercomputer
    DuBois, David
    DuBois, Andrew
    Connor, Carolyn
    Poole, Steve
    PROCEEDINGS OF THE SIXTEENTH IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, 2008, : 239 - +
  • [39] Understanding the performance of sparse matrix-vector multiplication
    Goumas, Georgios
    Kourtis, Kornilios
    Anastopoulos, Nikos
    Karakasis, Vasileios
    Koziris, Nectarios
    PROCEEDINGS OF THE 16TH EUROMICRO CONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING, 2008, : 283 - +
  • [40] Node aware sparse matrix-vector multiplication
    Bienz, Amanda
    Gropp, William D.
    Olson, Luke N.
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2019, 130 : 166 - 178