Dual in-memory computing of matrix-vector multiplication for accelerating neural networks

被引:0
|
作者
Wang, Shiqing [1 ]
Sun, Zhong [1 ]
机构
[1] Peking Univ, Inst Artificial Intelligence, Sch Integrated Circuits, Beijing Adv Innovat Ctr Integrated Circuits, Beijing 100871, Peoples R China
来源
DEVICE | 2024年 / 2卷 / 12期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
MACRO; CMOS; CHIP;
D O I
10.1016/j.device.2024.100546
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In-memory computing (IMC) aims to solve the von Neumann bottleneck by performing computations in the memory unit. However, the conventional IMC scheme only partially solves this issue, and it causes a digital- to-analog conversion overhead in performing analog matrix-vector multiplication (MVM). Here, we develop a dual-IMC scheme, which implies that both the weight and input of a neural network are stored in the memory array. The scheme performs MVM operations in a fully in-memory manner, eliminating the need for data transfer. We have tested our proof of concept by fabricating resistive random-access memory (RRAM) devices using semiconductor processes to experimentally demonstrate dual-IMC for signal recovery and image processing. Evaluations show that it achieves 3-4 orders of magnitude of improvement in the energy efficiency of MVM.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Time Complexity of In-Memory Matrix-Vector Multiplication
    Sun, Zhong
    Huang, Ru
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (08) : 2785 - 2789
  • [2] Iterative Sparse Matrix-Vector Multiplication on In-Memory Cluster Computing Accelerated by GPUs for Big Data
    Peng, Jiwu
    Xiao, Zheng
    Chen, Cen
    Yang, Wangdong
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 1454 - 1460
  • [3] Programming Weights to Analog In-Memory Computing Cores by Direct Minimization of the Matrix-Vector Multiplication Error
    Buechel, Julian
    Vasilopoulos, Athanasios
    Kersting, Benedikt
    Lammie, Corey
    Brew, Kevin
    Philip, Timothy
    Saulnier, Nicole
    Narayanan, Vijay
    Le Gallo, Manuel
    Sebastian, Abu
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2023, 13 (04) : 1052 - 1061
  • [4] MViD: Sparse Matrix-Vector Multiplication in Mobile DRAM for Accelerating Recurrent Neural Networks
    Kim, Byeongho
    Chung, Jongwook
    Lee, Eojin
    Jung, Wonkyung
    Lee, Sunjung
    Choi, Jaewan
    Park, Jaehyun
    Wi, Minbok
    Lee, Sukhan
    Ahn, Jung Ho
    IEEE TRANSACTIONS ON COMPUTERS, 2020, 69 (07) : 955 - 967
  • [5] Eidetic: An In-Memory Matrix Multiplication Accelerator for Neural Networks
    Eckert, Charles
    Subramaniyan, Arun
    Wang, Xiaowei
    Augustine, Charles
    Iyer, Ravishankar
    Das, Reetuparna
    IEEE TRANSACTIONS ON COMPUTERS, 2023, 72 (06) : 1539 - 1553
  • [6] A new approach for accelerating the sparse matrix-vector multiplication
    Tvrdik, Pavel
    Simecek, Ivan
    SYNASC 2006: EIGHTH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, PROCEEDINGS, 2007, : 156 - +
  • [7] Digital in-memory stochastic computing architecture for vector-matrix multiplication
    Agwa, Shady
    Prodromakis, Themis
    FRONTIERS IN NANOTECHNOLOGY, 2023, 5
  • [8] Accelerating Inference of Convolutional Neural Networks Using In-memory Computing
    Dazzi, Martino
    Sebastian, Abu
    Benini, Luca
    Eleftheriou, Evangelos
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2021, 15
  • [9] Recurrent Neural Networks With Column-Wise Matrix-Vector Multiplication on FPGAs
    Que, Zhiqiang
    Nakahara, Hiroki
    Nurvitadhi, Eriko
    Boutros, Andrew
    Fan, Hongxiang
    Zeng, Chenglong
    Meng, Jiuxi
    Tsoi, Kuen Hung
    Niu, Xinyu
    Luk, Wayne
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2022, 30 (02) : 227 - 237
  • [10] TFix: Exploiting the Natural Redundancy of Ternary Neural Networks for Fault Tolerant In-Memory Vector Matrix Multiplication
    Malhotra, Akul
    Wang, Chunguang
    Gupta, Sumeet Kumar
    2023 60TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC, 2023,