A heteroscedastic regression model with the generalized normal distribution

被引:1
|
作者
Eskin, Emine Nur [1 ]
Dogru, Fatma Zehra [1 ]
机构
[1] Giresun Univ, Dept Stat, TR-28100 Giresun, Turkiye
关键词
GN; Joint Location And Scale Model; Laplace Distribution; ML; Normal Distribution; SCALE-PARAMETERS; VARIANCE HETEROGENEITY; MAXIMUM-LIKELIHOOD; VARIABLE SELECTION; SKEWNESS MODELS; JOINT LOCATION; ROBUST;
D O I
10.14744/sigma.2024.00114114
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In regression analysis, joint modeling mean and dispersion is an essential tool in absence of the variance homogeneity. Moreover, it is known in the literature that the generalized normal (GN) distribution has some features that provide flexibility in modeling thanks to its shape parameter. This paper proposes a joint location and scale model of the GN distribution for modeling location and scale in the presence of heteroscedasticity. We provide maximum likelihood (ML) estimators for the parameters of the proposed model. We also give an estimation procedure to estimate all parameters simultaneously. For the application, some simulation study scenarios and a real-life example are carried out to prove the estimation performance of the proposed model.
引用
收藏
页码:1480 / 1489
页数:10
相关论文
共 50 条
  • [31] Bayesian Reference Analysis for the Generalized Normal Linear Regression Model
    Tomazella, Vera Lucia Damasceno
    Jesus, Sandra Rego
    Gazon, Amanda Buosi
    Louzada, Francisco
    Nadarajah, Saralees
    Nascimento, Diego Carvalho
    Rodrigues, Francisco Aparecido
    Ramos, Pedro Luiz
    SYMMETRY-BASEL, 2021, 13 (05):
  • [32] DETECTION OF THE JUMP POINTS OF A HETEROSCEDASTIC REGRESSION MODEL BY WAVELETS
    赵延孟
    李元
    Acta Mathematicae Applicatae Sinica(English Series), 2000, (04) : 420 - 429
  • [33] Tests for the error distribution in nonparametric possibly heteroscedastic regression models
    Marie Hušková
    Simos G. Meintanis
    TEST, 2010, 19 : 92 - 112
  • [34] Tests for the error distribution in nonparametric possibly heteroscedastic regression models
    Huskova, Marie
    Meintanis, Simos G.
    TEST, 2010, 19 (01) : 92 - 112
  • [35] Bagging-based ridge estimators for a linear regression model with non-normal and heteroscedastic errors
    Shabbir, Maha
    Chand, Sohail
    Iqbal, Farhat
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (08) : 3653 - 3667
  • [36] Heteroscedastic log-exponentiated Weibull regression model
    Ortega, Edwin M. M.
    Lemonte, Artur J.
    Cordeiro, Gauss M.
    Cancho, Vicente G.
    Mialhe, Fabio L.
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (03) : 384 - 408
  • [37] ASYMPTOTIC NORMALITY OF WAVELET ESTIMATOR IN HETEROSCEDASTIC REGRESSION MODEL
    Liang Hanying Lu Yi Dept.of Appl.Math.
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2007, (04) : 453 - 459
  • [38] Semiparametric regression for measurement error model with heteroscedastic error
    Li, Mengyan
    Ma, Yanyuan
    Li, Runze
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 171 : 320 - 338
  • [39] Asymptotic normality of wavelet estimator in heteroscedastic regression model
    Liang H.
    Lu Y.
    Applied Mathematics-A Journal of Chinese Universities, 2007, 22 (4) : 453 - 459
  • [40] Statistical inference for a heteroscedastic regression model with φ-mixing errors
    Ding, Liwang
    Chen, Ping
    Yongming, Li
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (08) : 4658 - 4676