Statistical inference for a heteroscedastic regression model with φ-mixing errors

被引:3
|
作者
Ding, Liwang [1 ,2 ]
Chen, Ping [1 ]
Yongming, Li [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Sci, Nanjing, Peoples R China
[2] Guangxi Univ Finance & Econ, Sch Informat & Stat, Nanning, Peoples R China
[3] Shangrao Normal Univ, Sch Math & Comp Sci, Shangrao, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotic normality; Wavelet estimation; Heteroscedastic regression model; phi-mixing random variable; ASYMPTOTIC NORMALITY; SAMPLE QUANTILES; ESTIMATOR; SUMS;
D O I
10.1080/03610918.2020.1747074
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we mainly study the asymptotic normality of wavelet estimators in the heteroscedastic regression model with phi-mixing errors. Under some suitable conditions, the asymptotic normality of the wavelet estimators of g and f in the heteroscedastic regression model with phi-mixing errors are obtained, which generalize or improve the corresponding ones for alpha-mixing random variables and martingale difference sequence in some sense. Also, the simulation study of the finite samples provided in this paper shows the validity of our results.
引用
收藏
页码:4658 / 4676
页数:19
相关论文
共 50 条