Wavelet estimation in heteroscedastic regression models with α-mixing random errors

被引:2
|
作者
Ding, Liwang [1 ,2 ]
Chen, Ping [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Peoples R China
[2] Guangxi Univ Finance & Econ, Sch Informat & Stat, Nanning 530003, Peoples R China
基金
中国国家自然科学基金;
关键词
asymptotic normality; Berry-Esseen-type bound; heteroscedastic regression model; alpha-mixing random variables;
D O I
10.1007/s10986-021-09508-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the heteroscedastic regression model Y-ni = g(x(ni)) + sigma(ni)epsilon(ni), i = 1, . . . , n, where sigma(2)(ni) = f(u(ni)), (x(ni), u(ni)) are known fixed design points, g and f are unknown functions, and the errors epsilon(ni) are assumed to form a stationary alpha-mixing random variables. Under some mild conditions, we obtain the asymptotic normality for wavelet estimators of f, prove their the asymptotic normality, and establish the Berry-Esseen-type bound for wavelet estimators of g. Also, by the given conditions we study the Berry-Esseen-type bound for estimators of g; for any delta > 0, it is of order O(n-((1/30)+delta)). Finally, we have conducted comprehensive simulation studies to demonstrate the validity of obtained theoretical results.
引用
收藏
页码:13 / 36
页数:24
相关论文
共 50 条