Tests for the error distribution in nonparametric possibly heteroscedastic regression models

被引:17
|
作者
Huskova, Marie [1 ,2 ]
Meintanis, Simos G. [3 ]
机构
[1] Charles Univ Prague, Dept Stat, Prague 18675 8, Czech Republic
[2] UTIA Czech Acad Sci, Prague 18600, Czech Republic
[3] Univ Athens, Dept Econ, Athens 10559, Greece
关键词
Empirical characteristic function; Kernel regression estimator; Goodness-of-fit; Parametric bootstrap; GOODNESS-OF-FIT; LIMIT-THEOREMS; SCALE;
D O I
10.1007/s11749-008-0135-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consistent procedures are constructed for testing the goodness-of-fit of the error distribution in nonparametric regression models. The test starts with a kernel-type regression fit and proceeds with the construction of a test statistic in the form of an L (2) distance between a parametric and a nonparametric estimates of the residual characteristic function. The asymptotic null distribution and the behavior of the test statistic under alternatives are investigated. A simulation study compares bootstrap versions of the proposed test to corresponding procedures utilizing the empirical distribution function.
引用
收藏
页码:92 / 112
页数:21
相关论文
共 50 条