Adaptive estimators for nonparametric heteroscedastic regression models

被引:0
|
作者
Brua, J. -Y. [1 ]
机构
[1] Univ Strasbourg, IRMA, Dept Math, F-67084 Strasbourg, France
关键词
adaptive estimation; heteroscedastic regression; kernel estimator; minimax; nonparametric regression;
D O I
10.1080/10485250902993645
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper deals with the estimation of a regression function at a fixed point in nonparametric heteroscedastic regression models with Gaussian noise. We assume that the variance of the noise depends on the regressor and on the regression function. We make use of the minimax absolute error risk taken over a Holder class of regression functions. As the smoothness of the regression function is supposed to be unknown, we construct an adaptive kernel estimator which attains the minimax rate. More precisely, we give an asymptotic upper bound and an asymptotic lower bound for the minimax risk.
引用
收藏
页码:991 / 1002
页数:12
相关论文
共 50 条