ADAPTIVE VARIANCE FUNCTION ESTIMATION IN HETEROSCEDASTIC NONPARAMETRIC REGRESSION

被引:44
|
作者
Cai, T. Tony [1 ]
Wang, Lie [1 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
来源
ANNALS OF STATISTICS | 2008年 / 36卷 / 05期
关键词
Adaptive estimation; nonparametric regression; thresholding; variance function estimation; wavelets;
D O I
10.1214/07-AOS509
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a wavelet thresholding approach to adaptive variance function estimation in heteroscedastic nonparametric regression. A data-driven estimator is constructed by applying wavelet thresholding to the squared first-order differences of the observations. We show that the variance function estimator is nearly optimally adaptive to the smoothness of both the mean and variance functions. The estimator is shown to achieve the optimal adaptive rate of convergence under the pointwise squared error simultaneously over a range of smoothness classes. The estimator is also adaptively within a logarithmic factor of the minimax risk under the global mean integrated squared error over a collection of spatially inhomogeneous function classes. Numerical implementation and simulation results are also discussed.
引用
收藏
页码:2025 / 2054
页数:30
相关论文
共 50 条
  • [1] ADAPTIVE ESTIMATION IN A HETEROSCEDASTIC NONPARAMETRIC REGRESSION
    Pchelintsev, E. A.
    Perelevskiy, S. S.
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2019, (57): : 38 - 52
  • [2] A Least Squares Method for Variance Estimation in Heteroscedastic Nonparametric Regression
    Zhou, Yuejin
    Cheng, Yebin
    Tong, Tiejun
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [3] Adaptive asymptotically efficient estimation in heteroscedastic nonparametric regression
    Galtchouk, Leonid
    Pergamenshchikov, Sergey
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2009, 38 (04) : 305 - 322
  • [4] Adaptive asymptotically efficient estimation in heteroscedastic nonparametric regression
    Leonid Galtchouk
    Sergey Pergamenshchikov
    [J]. Journal of the Korean Statistical Society, 2009, 38 : 305 - 322
  • [5] OPTIMAL DIFFERENCE-BASED VARIANCE ESTIMATION IN HETEROSCEDASTIC NONPARAMETRIC REGRESSION
    Zhou, Yuejin
    Cheng, Yebin
    Wang, Lie
    Tong, Tiejun
    [J]. STATISTICA SINICA, 2015, 25 (04) : 1377 - 1397
  • [6] Estimation of the Variance Function in Heteroscedastic Linear Regression Models
    Shen, Silian
    Mei, Changlin
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (07) : 1098 - 1112
  • [7] Sharp-optimal and adaptive estimation for heteroscedastic nonparametric regression
    Efromovich, S
    Pinsker, M
    [J]. STATISTICA SINICA, 1996, 6 (04) : 925 - 942
  • [8] ADAPTIVE EFFICIENT ESTIMATION FOR A FUNCTION IN HETEROSCEDASTIC REGRESSION
    Pchelintsev, E. A.
    Perelevskiy, S. S.
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2019, (49): : 73 - 81
  • [9] Estimation of Variance Function in Heteroscedastic Regression Models by Generalized Coiflets
    Palanisamy, Thangavel
    Ravichandran, Joghee
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2014, 43 (10) : 2213 - 2224
  • [10] Effect of mean on variance function estimation in nonparametric regression
    Wang, Lie
    Brown, Lawrence D.
    Cai, T. Tony
    Levine, Michael
    [J]. ANNALS OF STATISTICS, 2008, 36 (02): : 646 - 664