Two-Order Superconvergent CDG Finite Element Method for the Heat Equation on Triangular and Tetrahedral Meshes

被引:0
|
作者
Ye, Xiu [1 ]
Zhang, Shangyou [2 ]
机构
[1] Univ Arkansas Little Rock, Dept Math, Little Rock, AR 72204 USA
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
Parabolic equations; Finite element; Conforming discontinuous Galerkin (CDG); Triangular mesh; Tetrahedral mesh; Primary; WEAK GALERKIN METHOD; STOKES EQUATIONS; STABILIZER-FREE; TIME; ROBUST;
D O I
10.1007/s42967-024-00444-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a conforming discontinuous Galerkin (CDG) finite element method for solving the heat equation. Unlike the rest of discontinuous Galerkin (DG) methods, the numerical-flux {del uh<middle dot>n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\nabla u_h\cdot \textbf{n}\}$$\end{document} is not introduced to the computation in the CDG method. Additionally, the numerical-trace {uh}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ u_h \}$$\end{document} is not the average (uh|T1+uh|T2)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u_h|_{T_1} +u_h|_{T_2})/2$$\end{document} (or some other simple average used in other DG methods), but a lifted Pk+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{k+1}$$\end{document} polynomial from the Pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_k$$\end{document} solution uh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_h$$\end{document} on nearby four triangles in 2D, or eight tetrahedra in 3D. We show a two-order superconvergence in space approximation when using the CDG method with a backward Euler time discretization, on triangular and tetrahedral meshes, for solving the heat equation. Numerical tests are reported which confirm the theory.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Dispersion Characteristics and Applications of Higher Order Isosceles Triangular Meshes in the Finite Element Method
    Niu, Yuhua
    Liu, Jinbo
    Luo, Wen
    Li, Zengrui
    Song, Jiming
    IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, 2023, 4 : 1171 - 1175
  • [12] Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes
    Kunert, G
    Nicaise, S
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (06): : 1013 - 1043
  • [13] A new element-by-element method for trajectory calculations with tetrahedral finite element meshes
    Heniche, Mourad
    Tanguy, Philippe A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 67 (09) : 1290 - 1317
  • [14] Analysis of and workarounds for element reversal for a finite element-based algorithm for warping triangular and tetrahedral meshes
    Shontz, Suzanne M.
    Vavasis, Stephen A.
    BIT NUMERICAL MATHEMATICS, 2010, 50 (04) : 863 - 884
  • [15] Analysis of and workarounds for element reversal for a finite element-based algorithm for warping triangular and tetrahedral meshes
    Suzanne M. Shontz
    Stephen A. Vavasis
    BIT Numerical Mathematics, 2010, 50 : 863 - 884
  • [16] β-Robust Superconvergent Analysis of a Finite Element Method for the Distributed Order Time-Fractional Diffusion Equation
    Huang, Chaobao
    Chen, Hu
    An, Na
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
  • [17] AN AUXILIARY EQUATION METHOD FOR OBTAINING SUPERCONVERGENT FINITE-ELEMENT APPROXIMATIONS
    JOHNSON, RW
    MACKINNON, RJ
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1992, 8 (02): : 99 - 107
  • [18] A novel Galerkin-like weakform and a superconvergent alpha finite element method (SαFEM) for mechanics problems using triangular meshes
    Liu, G. R.
    Nguyen-Xuan, H.
    Nguyen-Thoi, T.
    Xu, X.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (11) : 4055 - 4087
  • [19] A framework of the finite element solution of the Landau-Lifshitz-Gilbert equation on tetrahedral meshes
    Yang, Lei
    Chen, Jingrun
    Hu, Guanghui
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 431
  • [20] The elastoplastic formulation of polygonal element method based on triangular finite meshes
    Cai, Yong-chang
    Zhu, He-hua
    Guo, Sheng-yong
    STRUCTURAL ENGINEERING AND MECHANICS, 2008, 30 (01) : 119 - 129