Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes

被引:18
|
作者
Kunert, G [1 ]
Nicaise, S
机构
[1] TU Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[2] Univ Valenciennes & Hainaut Cambresis, MACS, F-59304 Valenciennes, France
关键词
anisotropic mesh; error estimator; Zienkiewicz-Zhu estimator; recovered gradient;
D O I
10.1051/m2an:2003065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a posteriori error estimators that can be applied to anisotropic tetrahedral finite element meshes, i.e. meshes where the aspect ratio of the elements can be arbitrarily large. Two kinds of Zienkiewicz-Zhu (ZZ) type error estimators are derived which originate from different backgrounds. In the course of the analysis, the first estimator turns out to be a special case of the second one, and both estimators can be expressed using some recovered gradient. The advantage of keeping two different analyses of the estimators is that they allow different and partially novel investigations and results. Both rigorous analytical approaches yield the equivalence of each, ZZ error estimator to a known residual error estimator. Thus reliability and efficiency of the ZZ error estimation is obtained. The anisotropic discretizations require analytical tools beyond the standard isotropic methods. Particular attention is paid to the requirements on the anisotropic mesh. The analysis is complemented and confirmed by extensive numerical examples. They show that good results can be obtained for a large class of problems, demonstrated exemplary for the Poisson problem and a singularly perturbed reaction diffusion problem.
引用
收藏
页码:1013 / 1043
页数:31
相关论文
共 50 条