Demand Peak Forecasting of the Fused Magnesia Furnace Group With Model Prediction and Adaptive Deep Learning

被引:0
|
作者
Liu, Yuheng [1 ]
Chai, Tianyou [1 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
关键词
Smelting; Predictive models; Data models; Monitoring; Adaptation models; Furnaces; Production; Adaptive deep learning; demand peak; end-edge-cloud collaboration; model prediction; multistep forecasting;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
During the fused magnesia production process (FMPP), there is a demand peak phenomenon that the demand rises first and then falls. Once the demand exceeds its limit value, the power will be cut off. To avoid mistaken power off caused by demand peak, demand peak needs to be forecast, so multistep demand forecasting is required. In this article, we develop a dynamic model of demand based on the closed-loop control system of smelting current in the FMPP. Using the model prediction method, we develop a multistep demand forecasting model consisting of a linear model and an unknown nonlinear dynamic system. Combining system identification with adaptive deep learning, an intelligent forecasting method for furnace group demand peak based on end-edge-cloud collaboration is proposed. It is verified that the proposed forecasting method can accurately forecast demand peak by utilizing industrial big data and end-edge-cloud collaboration technology.
引用
收藏
页码:15920 / 15931
页数:12
相关论文
共 50 条
  • [21] Deep Learning based Prediction Model for Adaptive Video Streaming
    Lekharu, Anirban
    Moulii, K. Y.
    Sur, Arijit
    Sarkar, Arnab
    2020 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2020,
  • [22] SSMFN: a fused spatial and sequential deep learning model for methylation site prediction
    Lumbanraja, Favorisen Rosyking
    Mahesworo, Bharuno
    Cenggoro, Tjeng Wawan
    Sudigyo, Digdo
    Pardamean, Bens
    PEERJ COMPUTER SCIENCE, 2021, 7 : 1 - 14
  • [23] A Deep Learning-Based Soft Sensing Prediction Model for Tubular Furnace
    Wang, Xiaowen
    Zhang, Yongjun
    Guo, Qiang
    Zhang, Fei
    Yildirim, Tanju
    2022 INTERNATIONAL CONFERENCE ON FRONTIERS OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, FAIML, 2022, : 13 - 21
  • [24] Tourism Demand Forecasting: A Decomposed Deep Learning Approach
    Zhang, Yishuo
    Li, Gang
    Muskat, Birgit
    Law, Rob
    JOURNAL OF TRAVEL RESEARCH, 2021, 60 (05) : 981 - 997
  • [25] Tourism demand forecasting: An ensemble deep learning approach
    Sun, Shaolong
    Li, Yanzhao
    Guo, Ju-e
    Wang, Shouyang
    TOURISM ECONOMICS, 2022, 28 (08) : 2021 - 2049
  • [26] Incremental Adaptive Time Series Prediction for Power Demand Forecasting
    Vrablecova, Petra
    Rozinajova, Viera
    Ezzeddine, Anna Bou
    DATA MINING AND BIG DATA, DMBD 2017, 2017, 10387 : 83 - 92
  • [27] Deep-Learning-Based Adaptive Model for Solar Forecasting Using Clustering
    Malakar, Sourav
    Goswami, Saptarsi
    Ganguli, Bhaswati
    Chakrabarti, Amlan
    Sen Roy, Sugata
    Boopathi, K.
    Rangaraj, A. G.
    ENERGIES, 2022, 15 (10)
  • [28] Regional tourism demand forecasting with spatiotemporal interactions: a multivariate decomposition deep learning model
    Yang, Dongchuan
    Li, Yanzhao
    Guo, Ju'e
    Li, Gang
    Sun, Shaolong
    ASIA PACIFIC JOURNAL OF TOURISM RESEARCH, 2023, 28 (06) : 625 - 646
  • [29] A novel outlier calendrical heterogeneity reconstruction deep learning model for electricity demand forecasting
    Huan Songhua
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (02) : 3363 - 3394
  • [30] Tourism demand forecasting: a deep learning model based on spatial-temporal transformer
    Chen, Jiaying
    Li, Cheng
    Huang, Liyao
    Zheng, Weimin
    TOURISM REVIEW, 2025, 80 (03) : 648 - 663