Incremental Adaptive Time Series Prediction for Power Demand Forecasting

被引:3
|
作者
Vrablecova, Petra [1 ]
Rozinajova, Viera [1 ]
Ezzeddine, Anna Bou [1 ]
机构
[1] Slovak Univ Technol Bratislava, Fac Informat & Informat Technol, Ilkovicova 2, Bratislava 84216, Slovakia
来源
关键词
Power demand forecasting; Stream mining; Concept drift;
D O I
10.1007/978-3-319-61845-6_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate power demand forecasts can help power distributors to lower differences between contracted and demanded electricity and minimize the imbalance in grid and related costs. Our forecasting method is designed to process continuous stream of data from smart meters incrementally and to adapt the prediction model to concept drifts in power demand. It identifies drifts using a condition based on an acceptable distributor's daily imbalance. Using only the most recent data to adapt the model (in contrast to all historical data) and adapting the model only when the need for it is detected (in contrast to creating a whole new model every day) enables the method to handle stream data. The proposed model shows promising results.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 50 条
  • [1] Uncertain time series forecasting method for the water demand prediction in Beijing
    Li, Haiyan
    Wang, Xiaosheng
    Guo, Haiying
    WATER SUPPLY, 2022, 22 (03) : 3254 - 3270
  • [2] Forecasting electricity demand by time series models
    Stoimenova, E.
    Prodanova, K.
    Prodanova, R.
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS '33, 2007, 946 : 81 - +
  • [3] Forecasting models for prediction in time series
    Otávio A. S. Carpinteiro
    João P. R. R. Leite
    Carlos A. M. Pinheiro
    Isaías Lima
    Artificial Intelligence Review, 2012, 38 : 163 - 171
  • [4] Forecasting models for prediction in time series
    Carpinteiro, Otavio A. S.
    Leite, Joao P. R. R.
    Pinheiro, Carlos A. M.
    Lima, Isaias
    ARTIFICIAL INTELLIGENCE REVIEW, 2012, 38 (02) : 163 - 171
  • [5] ADAPTIVE PREDICTION OF TIME SERIES
    KAWATAKE, K
    HIRASAWA, K
    ELECTRICAL ENGINEERING IN JAPAN, 1968, 88 (08) : 8 - &
  • [6] Water demand forecasting of Beijing using the Time Series Forecasting Method
    Yuanzheng Zhai
    Jinsheng Wang
    Yanguo Teng
    Rui Zuo
    Journal of Geographical Sciences, 2012, 22 : 919 - 932
  • [7] Water demand forecasting of Beijing using the Time Series Forecasting Method
    Zhai Yuanzheng
    Wang Jinsheng
    Teng Yanguo
    Zuo Rui
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2012, 22 (05) : 919 - 932
  • [8] AdaRNN: Adaptive Learning and Forecasting for Time Series
    Du, Yuntao
    Wang, Jindong
    Feng, Wenjie
    Pan, Sinno
    Qin, Tao
    Xu, Renjun
    Wang, Chongjun
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 402 - 411
  • [9] Online Adaptive Multivariate Time Series Forecasting
    Saadallah, Amal
    Mykula, Hanna
    Morik, Katharina
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT VI, 2023, 13718 : 19 - 35
  • [10] Forecasting tourism demand by fuzzy time series models
    Huarng, Kun-Huang
    Yu, Tiffany Hui-Kuang
    Moutinho, Luiz
    Wang, Yu-Chun
    INTERNATIONAL JOURNAL OF CULTURE TOURISM AND HOSPITALITY RESEARCH, 2012, 6 (04) : 377 - 388