Forecasting models for prediction in time series

被引:6
|
作者
Carpinteiro, Otavio A. S. [1 ]
Leite, Joao P. R. R. [1 ]
Pinheiro, Carlos A. M. [1 ]
Lima, Isaias [1 ]
机构
[1] Univ Fed Itajuba, Res Grp Syst & Comp Engn, BR-37500903 Itajuba, MG, Brazil
关键词
Kernel-based models; Neural models; Hierarchical models; Artificial intelligence; Financial time-series forecasting; SPATIOTEMPORAL CONNECTIONIST NETWORKS; TAXONOMY;
D O I
10.1007/s10462-011-9275-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the study of three forecasting models-a multilayer perceptron, a support vector machine, and a hierarchical model. The hierarchical model is made up of a self-organizing map and a support vector machine-the latter on top of the former. The models are trained and assessed on a time series of a Brazilian stock market fund. The results from the experiments show that the performance of the hierarchical model is better than that of the support vector machine, and much better than that of the multilayer perceptron.
引用
收藏
页码:163 / 171
页数:9
相关论文
共 50 条
  • [1] Forecasting models for prediction in time series
    Otávio A. S. Carpinteiro
    João P. R. R. Leite
    Carlos A. M. Pinheiro
    Isaías Lima
    [J]. Artificial Intelligence Review, 2012, 38 : 163 - 171
  • [2] Wildfire Prediction in the United States Using Time Series Forecasting Models
    Kabir, Muhammad Khubayeeb
    Ghosh, Kawshik Kumar
    Ul Islam, Md. Fahim
    Uddin, Jia
    [J]. Annals of Emerging Technologies in Computing, 2024, 8 (02) : 32 - 42
  • [3] HYBRID TIME-SERIES FORECASTING MODELS FOR TRAFFIC FLOW PREDICTION
    Rajalakshmi, V.
    Vaidyanathan, S. Ganesh
    [J]. PROMET-TRAFFIC & TRANSPORTATION, 2022, 34 (04): : 537 - 549
  • [4] Combining time series models for forecasting
    Zou, H
    Yang, YH
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2004, 20 (01) : 69 - 84
  • [5] Recursive prediction for long term time series forecasting using advanced models
    Herrera, L. J.
    Pomares, H.
    Rojas, I.
    Guillen, A.
    Prieto, A.
    Valenzuela, O.
    [J]. NEUROCOMPUTING, 2007, 70 (16-18) : 2870 - 2880
  • [6] Time series forecasting for hypotension crisis prediction
    Bikulciene, Liepa
    Lukoseviciute, Kristina
    [J]. INTERNATIONAL WORK-CONFERENCE ON TIME SERIES (ITISE 2014), 2014, : 435 - 445
  • [7] SMOOTHING FORECASTING AND PREDICTION OF DISCRETE TIME SERIES
    FISHMAN, GS
    [J]. OPERATIONS RESEARCH, 1965, 13 (02) : 328 - &
  • [8] Deep Video Prediction for Time Series Forecasting
    Zeng, Zhen
    Balch, Tucker
    Veloso, Manuela
    [J]. ICAIF 2021: THE SECOND ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, 2021,
  • [9] Profit Prediction Using ARIMA, SARIMA and LSTM Models in Time Series Forecasting: A Comparison
    Sirisha, Uppala Meena
    Belavagi, Manjula C.
    Attigeri, Girija
    [J]. IEEE ACCESS, 2022, 10 : 124715 - 124727
  • [10] Performance Assessment of Time Series Forecasting Models for Cloud Datacenter Networks’ Workload Prediction
    Jitendra Kumar
    Ashutosh Kumar Singh
    [J]. Wireless Personal Communications, 2021, 116 : 1949 - 1969