Demand Peak Forecasting of the Fused Magnesia Furnace Group With Model Prediction and Adaptive Deep Learning

被引:0
|
作者
Liu, Yuheng [1 ]
Chai, Tianyou [1 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
关键词
Smelting; Predictive models; Data models; Monitoring; Adaptation models; Furnaces; Production; Adaptive deep learning; demand peak; end-edge-cloud collaboration; model prediction; multistep forecasting;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
During the fused magnesia production process (FMPP), there is a demand peak phenomenon that the demand rises first and then falls. Once the demand exceeds its limit value, the power will be cut off. To avoid mistaken power off caused by demand peak, demand peak needs to be forecast, so multistep demand forecasting is required. In this article, we develop a dynamic model of demand based on the closed-loop control system of smelting current in the FMPP. Using the model prediction method, we develop a multistep demand forecasting model consisting of a linear model and an unknown nonlinear dynamic system. Combining system identification with adaptive deep learning, an intelligent forecasting method for furnace group demand peak based on end-edge-cloud collaboration is proposed. It is verified that the proposed forecasting method can accurately forecast demand peak by utilizing industrial big data and end-edge-cloud collaboration technology.
引用
收藏
页码:15920 / 15931
页数:12
相关论文
共 50 条
  • [41] Water demand forecasting based on adaptive extreme learning machine
    Jia, Jinming
    Hao, Shengyue
    PROCEEDINGS OF THE 2013 THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SOFTWARE ENGINEERING (ICAISE 2013), 2013, 37 : 42 - 45
  • [42] An adaptive prediction model for sparse data forecasting
    Yao, Xuan
    INTERNATIONAL JOURNAL OF AUTONOMOUS AND ADAPTIVE COMMUNICATIONS SYSTEMS, 2022, 15 (04) : 331 - 344
  • [43] DESIGN OF A FORECASTING MODEL OF REGIONAL ELECTRICITY COMPOSITION AND PEAK DEMAND.
    OLSEN, R.
    1981,
  • [44] ADAPTIVE FORECASTING-MODEL (WITH APPLICATION TO PEAK SYSTEM LOAD)
    URI, ND
    ECONOMIC PLANNING, 1977, 13 (3-4): : 3 - 9
  • [45] A Deep Learning Approach for Load Demand Forecasting of Power Systems
    Kollia, Ilianna
    Kollias, Stefanos
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 912 - 919
  • [46] Deep learning models for forecasting aviation demand time series
    Andreas Kanavos
    Fotios Kounelis
    Lazaros Iliadis
    Christos Makris
    Neural Computing and Applications, 2021, 33 : 16329 - 16343
  • [47] A Hybrid Deep Learning Forecasting Model Using GPU Disaggregated Function Evaluations Applied For Household Electricity Demand Forecasting
    Coelho, Vitor N.
    Coelho, Igor M.
    Rios, Eyder
    Filho, Alexandre S. T.
    Reis, Agnaldo J. R.
    Coelho, Bruno N.
    Alves, Alysson
    Netto, Guilherme G.
    Souza, Marcone J. F.
    Guimaraes, Frederico G.
    PROCEEDINGS OF RENEWABLE ENERGY INTEGRATION WITH MINI/MICROGRID (REM2016), 2016, 103 : 280 - 285
  • [48] An Insight of Deep Learning Based Demand Forecasting in Smart Grids
    Aguiar-Perez, Javier Manuel
    Perez-Juarez, Maria Angeles
    SENSORS, 2023, 23 (03)
  • [49] Deep learning models for forecasting aviation demand time series
    Kanavos, Andreas
    Kounelis, Fotios
    Iliadis, Lazaros
    Makris, Christos
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (23): : 16329 - 16343
  • [50] Deep Learning for Demand Forecasting in the Fashion and Apparel Retail Industry
    Giri, Chandadevi
    Chen, Yan
    FORECASTING, 2022, 4 (02): : 565 - 581