Data-Driven Search Algorithm for Discovery of Synthesizable Zeolitic Imidazolate Frameworks

被引:0
|
作者
Lee, Soochan [1 ]
Jeong, Hyein [1 ]
Jung, Sungyeop [1 ]
Kim, Yeongjin [1 ]
Cho, Eunchan [1 ]
Nam, Joohan [1 ]
Yang, D. ChangMo [1 ]
Shin, Dong Yun [2 ]
Lee, Jung-Hoon [2 ,3 ]
Oh, Hyunchul [1 ,4 ]
Choe, Wonyoung [1 ,4 ,5 ,6 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Dept Chem, Ulsan 44919, South Korea
[2] Korea Inst Sci & Technol KIST, Computat Sci Res Ctr, Seoul 02792, South Korea
[3] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
[4] Ulsan Natl Inst Sci & Technol, Grad Sch Carbon Neutral, Ulsan 44919, South Korea
[5] Ulsan Natl Inst Sci & Technol, Grad Sch Artificial Intelligence, Grad Sch Carbon Neutral, Ulsan 44919, South Korea
[6] Ulsan Natl Inst Sci & Technol, Dept Mech Engn, Ulsan 44919, South Korea
来源
JACS AU | 2025年
基金
新加坡国家研究基金会;
关键词
metal-organic frameworks; zeolitic imidazolateframeworks; zeolite analogues; adsorption; zeolite conundrum; chemical intuition; METAL-ORGANIC FRAMEWORKS; CRYSTAL-STRUCTURES; CHEMISTRY; MEMBRANES; SILICA;
D O I
10.1021/jacsau.5c00077
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zeolitic imidazolate frameworks (ZIFs), metal-organic analogues of zeolites, hold great potential for carbon-neutral applications due to their exceptional stability and porosity. However, ZIF discovery has been hindered by the limited topologies resulting from a mismatch between numerous predicted and few synthesized zeolitic networks. To address this, we propose a data-driven search algorithm using structural descriptors of known materials as a screening tool. From over 4 million zeolite structures, we identified potential ZIF candidates based on O-T-O angle differences, vertex symbols, and T-O-T angles. Energy calculations facilitated the ranking of ZIFs by their synthesizability, leading to the successful synthesis of three ZIFs with two novel topologies: UZIF-31 (uft1) and UZIF-32, -33 (uft2). Notably, UZIF-33 exhibited remarkable CO2 selective adsorption. This study highlights the synergistic potential of combining structural predictions with chemical intuition to advance material discovery.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Data-driven discovery of partial differential equations
    Rudy, Samuel H.
    Brunton, Steven L.
    Proctor, Joshua L.
    Kutz, J. Nathan
    SCIENCE ADVANCES, 2017, 3 (04):
  • [42] Data-driven discovery of formulas by symbolic regression
    Sun, Sheng
    Ouyang, Runhai
    Zhang, Bochao
    Zhang, Tong-Yi
    MRS BULLETIN, 2019, 44 (07) : 559 - 564
  • [43] Data-Driven Domain Discovery for Structured Datasets
    Ota, Masayo
    Mueller, Heiko
    Freire, Juliana
    Srivastava, Divesh
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 13 (07): : 953 - 965
  • [44] Opportunities and Challenges of Data-Driven Virus Discovery
    Lauber, Chris
    Seitz, Stefan
    BIOMOLECULES, 2022, 12 (08)
  • [45] Data-Driven Discovery of Active Nematic Hydrodynamics
    Joshi, Chaitanya
    Ray, Sattvic
    Lemma, Linnea M.
    Varghese, Minu
    Sharp, Graham
    Dogic, Zvonimir
    Baskaran, Aparna
    Hagan, Michael F.
    PHYSICAL REVIEW LETTERS, 2022, 129 (=256601)
  • [46] Data-driven discovery of formulas by symbolic regression
    Sheng Sun
    Runhai Ouyang
    Bochao Zhang
    Tong-Yi Zhang
    MRS Bulletin, 2019, 44 : 559 - 564
  • [47] Data-driven discovery of PDEs in complex datasets
    Berg, Jens
    Nystrom, Kaj
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 384 : 239 - 252
  • [48] Biomedical evidence engineering for data-driven discovery
    Zhao, Sendong
    Wang, Aobo
    Qin, Bing
    Wang, Fei
    BIOINFORMATICS, 2022, 38 (23) : 5270 - 5278
  • [49] Data-driven drug discovery and healthcare by AI
    Yamanishi, Yoshihiro
    CANCER SCIENCE, 2023, 114 : 7 - 7
  • [50] Paleontology Knowledge Graph for Data-Driven Discovery
    Deng, Yiying
    Song, Sicun
    Fan, Junxuan
    Luo, Mao
    Yao, Le
    Dong, Shaochun
    Shi, Yukun
    Zhang, Linna
    Wang, Yue
    Xu, Haipeng
    Xu, Huiqing
    Zhao, Yingying
    Pan, Zhaohui
    Hou, Zhangshuai
    Li, Xiaoming
    Shen, Boheng
    Chen, Xinran
    Zhang, Shuhan
    Wu, Xuejin
    Xing, Lida
    Liang, Qingqing
    Wang, Enze
    JOURNAL OF EARTH SCIENCE, 2024, 35 (03) : 1024 - 1034