Data-Driven Search Algorithm for Discovery of Synthesizable Zeolitic Imidazolate Frameworks

被引:0
|
作者
Lee, Soochan [1 ]
Jeong, Hyein [1 ]
Jung, Sungyeop [1 ]
Kim, Yeongjin [1 ]
Cho, Eunchan [1 ]
Nam, Joohan [1 ]
Yang, D. ChangMo [1 ]
Shin, Dong Yun [2 ]
Lee, Jung-Hoon [2 ,3 ]
Oh, Hyunchul [1 ,4 ]
Choe, Wonyoung [1 ,4 ,5 ,6 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Dept Chem, Ulsan 44919, South Korea
[2] Korea Inst Sci & Technol KIST, Computat Sci Res Ctr, Seoul 02792, South Korea
[3] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
[4] Ulsan Natl Inst Sci & Technol, Grad Sch Carbon Neutral, Ulsan 44919, South Korea
[5] Ulsan Natl Inst Sci & Technol, Grad Sch Artificial Intelligence, Grad Sch Carbon Neutral, Ulsan 44919, South Korea
[6] Ulsan Natl Inst Sci & Technol, Dept Mech Engn, Ulsan 44919, South Korea
来源
JACS AU | 2025年
基金
新加坡国家研究基金会;
关键词
metal-organic frameworks; zeolitic imidazolateframeworks; zeolite analogues; adsorption; zeolite conundrum; chemical intuition; METAL-ORGANIC FRAMEWORKS; CRYSTAL-STRUCTURES; CHEMISTRY; MEMBRANES; SILICA;
D O I
10.1021/jacsau.5c00077
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zeolitic imidazolate frameworks (ZIFs), metal-organic analogues of zeolites, hold great potential for carbon-neutral applications due to their exceptional stability and porosity. However, ZIF discovery has been hindered by the limited topologies resulting from a mismatch between numerous predicted and few synthesized zeolitic networks. To address this, we propose a data-driven search algorithm using structural descriptors of known materials as a screening tool. From over 4 million zeolite structures, we identified potential ZIF candidates based on O-T-O angle differences, vertex symbols, and T-O-T angles. Energy calculations facilitated the ranking of ZIFs by their synthesizability, leading to the successful synthesis of three ZIFs with two novel topologies: UZIF-31 (uft1) and UZIF-32, -33 (uft2). Notably, UZIF-33 exhibited remarkable CO2 selective adsorption. This study highlights the synergistic potential of combining structural predictions with chemical intuition to advance material discovery.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Data-driven abductive discovery in mineralogy
    Hazen, Robert M.
    AMERICAN MINERALOGIST, 2014, 99 (11-12) : 2165 - 2170
  • [22] Data-driven discovery of intrinsic dynamics
    Floryan, Daniel
    Graham, Michael D. D.
    NATURE MACHINE INTELLIGENCE, 2022, 4 (12) : 1113 - 1120
  • [23] Data-driven drug discovery by AI
    Yamanishi, Yoshihiro
    CANCER SCIENCE, 2022, 113 : 1376 - 1376
  • [24] Data-driven discovery of intrinsic dynamics
    Daniel Floryan
    Michael D. Graham
    Nature Machine Intelligence, 2022, 4 : 1113 - 1120
  • [25] Data-driven discovery of causal interactions
    Saisai Ma
    Lin Liu
    Jiuyong Li
    Thuc Duy Le
    International Journal of Data Science and Analytics, 2019, 8 : 285 - 297
  • [26] Data-Driven Algorithm Design
    Gupta, Rishi
    Roughgarden, Tim
    COMMUNICATIONS OF THE ACM, 2020, 63 (06) : 87 - 94
  • [27] Materials Discovery and Crystal Growth of ZeoliteA Type Zeolitic-Imidazolate Frameworks Revealed by Atomic Force Microscopy
    Cubillas, Pablo
    Anderson, Michael W.
    Attfield, Martin P.
    CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (25) : 8236 - 8243
  • [28] Data-Driven Optimization of Piezoelectric Energy Harvesters via Pattern Search Algorithm
    Huang, Yang
    Yi, Zhiran
    Hu, Guosheng
    Yang, Bin
    MICROMACHINES, 2021, 12 (05)
  • [29] Data-driven discovery of Koopman eigenfunctions for control
    Kaiser, Eurika
    Kutz, J. Nathan
    Brunton, Steven L.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03):
  • [30] IUGS' Initiative on Data-Driven Geoscience Discovery
    Qiuming Cheng
    Journal of Earth Science, 2021, 32 (02) : 468 - 470