Data-Driven Search Algorithm for Discovery of Synthesizable Zeolitic Imidazolate Frameworks

被引:0
|
作者
Lee, Soochan [1 ]
Jeong, Hyein [1 ]
Jung, Sungyeop [1 ]
Kim, Yeongjin [1 ]
Cho, Eunchan [1 ]
Nam, Joohan [1 ]
Yang, D. ChangMo [1 ]
Shin, Dong Yun [2 ]
Lee, Jung-Hoon [2 ,3 ]
Oh, Hyunchul [1 ,4 ]
Choe, Wonyoung [1 ,4 ,5 ,6 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Dept Chem, Ulsan 44919, South Korea
[2] Korea Inst Sci & Technol KIST, Computat Sci Res Ctr, Seoul 02792, South Korea
[3] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
[4] Ulsan Natl Inst Sci & Technol, Grad Sch Carbon Neutral, Ulsan 44919, South Korea
[5] Ulsan Natl Inst Sci & Technol, Grad Sch Artificial Intelligence, Grad Sch Carbon Neutral, Ulsan 44919, South Korea
[6] Ulsan Natl Inst Sci & Technol, Dept Mech Engn, Ulsan 44919, South Korea
来源
JACS AU | 2025年
基金
新加坡国家研究基金会;
关键词
metal-organic frameworks; zeolitic imidazolateframeworks; zeolite analogues; adsorption; zeolite conundrum; chemical intuition; METAL-ORGANIC FRAMEWORKS; CRYSTAL-STRUCTURES; CHEMISTRY; MEMBRANES; SILICA;
D O I
10.1021/jacsau.5c00077
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zeolitic imidazolate frameworks (ZIFs), metal-organic analogues of zeolites, hold great potential for carbon-neutral applications due to their exceptional stability and porosity. However, ZIF discovery has been hindered by the limited topologies resulting from a mismatch between numerous predicted and few synthesized zeolitic networks. To address this, we propose a data-driven search algorithm using structural descriptors of known materials as a screening tool. From over 4 million zeolite structures, we identified potential ZIF candidates based on O-T-O angle differences, vertex symbols, and T-O-T angles. Energy calculations facilitated the ranking of ZIFs by their synthesizability, leading to the successful synthesis of three ZIFs with two novel topologies: UZIF-31 (uft1) and UZIF-32, -33 (uft2). Notably, UZIF-33 exhibited remarkable CO2 selective adsorption. This study highlights the synergistic potential of combining structural predictions with chemical intuition to advance material discovery.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] IUGS’ Initiative on Data-Driven Geoscience Discovery
    Qiuming Cheng
    Journal of Earth Science, 2021, 32 : 468 - 470
  • [32] Data-driven discovery of coordinates and governing equations
    Champion, Kathleen
    Lusch, Bethany
    Kutz, J. Nathan
    Brunton, Steven L.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (45) : 22445 - 22451
  • [33] Legislative Explorer: Data-Driven Discovery of Lawmaking
    Stramp, Nicholas
    Wilkerson, John
    PS-POLITICAL SCIENCE & POLITICS, 2015, 48 (01) : 115 - 119
  • [34] Data-Driven Discovery of Stochastic Differential Equations
    Yasen Wang
    Huazhen Fang
    Junyang Jin
    Guijun Ma
    Xin He
    Xing Dai
    Zuogong Yue
    Cheng Cheng
    Hai-Tao Zhang
    Donglin Pu
    Dongrui Wu
    Ye Yuan
    Jorge Gon?alves
    Jürgen Kurths
    Han Ding
    Engineering, 2022, (10) : 244 - 252
  • [35] Paleontology Knowledge Graph for Data-Driven Discovery
    Yiying Deng
    Sicun Song
    Junxuan Fan
    Mao Luo
    Le Yao
    Shaochun Dong
    Yukun Shi
    Linna Zhang
    Yue Wang
    Haipeng Xu
    Huiqing Xu
    Yingying Zhao
    Zhaohui Pan
    Zhangshuai Hou
    Xiaoming Li
    Boheng Shen
    Xinran Chen
    Shuhan Zhang
    Xuejin Wu
    Lida Xing
    Qingqing Liang
    Enze Wang
    Journal of Earth Science, 2024, 35 (03) : 1024 - 1034
  • [36] Data-Driven Discovery of Stochastic Differential Equations
    Wang, Yasen
    Fang, Huazhen
    Jin, Junyang
    Ma, Guijun
    He, Xin
    Dai, Xing
    Yue, Zuogong
    Cheng, Cheng
    Zhang, Hai-Tao
    Pu, Donglin
    Wu, Dongrui
    Yuan, Ye
    Goncalves, Jorge
    Kurths, Juergen
    Ding, Han
    ENGINEERING, 2022, 17 : 244 - 252
  • [37] Data-Driven Discovery of Active Nematic Hydrodynamics
    Joshi, Chaitanya
    Ray, Sattvic
    Lemma, Linnea M.
    Varghese, Minu
    Sharp, Graham
    Dogic, Zvonimir
    Baskaran, Aparna
    Hagan, Michael F.
    PHYSICAL REVIEW LETTERS, 2022, 129 (25)
  • [38] IUGS' Initiative on Data-Driven Geoscience Discovery
    Cheng, Qiuming
    JOURNAL OF EARTH SCIENCE, 2021, 32 (02) : 468 - 470
  • [39] A Review of Data-Driven Discovery for Dynamic Systems
    North, Joshua S.
    Wikle, Christopher K.
    Schliep, Erin M.
    INTERNATIONAL STATISTICAL REVIEW, 2023, 91 (03) : 464 - 492
  • [40] Data-Driven Discovery of Immune Contexture Biomarkers
    Schwen, Lars Ole
    Andersson, Emilia
    Korski, Konstanty
    Weiss, Nick
    Haase, Sabrina
    Gaire, Fabien
    Hahn, Horst K.
    Homeyer, Andre
    Grimm, Oliver
    FRONTIERS IN ONCOLOGY, 2018, 8