Data-Driven Search Algorithm for Discovery of Synthesizable Zeolitic Imidazolate Frameworks

被引:0
|
作者
Lee, Soochan [1 ]
Jeong, Hyein [1 ]
Jung, Sungyeop [1 ]
Kim, Yeongjin [1 ]
Cho, Eunchan [1 ]
Nam, Joohan [1 ]
Yang, D. ChangMo [1 ]
Shin, Dong Yun [2 ]
Lee, Jung-Hoon [2 ,3 ]
Oh, Hyunchul [1 ,4 ]
Choe, Wonyoung [1 ,4 ,5 ,6 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Dept Chem, Ulsan 44919, South Korea
[2] Korea Inst Sci & Technol KIST, Computat Sci Res Ctr, Seoul 02792, South Korea
[3] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
[4] Ulsan Natl Inst Sci & Technol, Grad Sch Carbon Neutral, Ulsan 44919, South Korea
[5] Ulsan Natl Inst Sci & Technol, Grad Sch Artificial Intelligence, Grad Sch Carbon Neutral, Ulsan 44919, South Korea
[6] Ulsan Natl Inst Sci & Technol, Dept Mech Engn, Ulsan 44919, South Korea
来源
JACS AU | 2025年
基金
新加坡国家研究基金会;
关键词
metal-organic frameworks; zeolitic imidazolateframeworks; zeolite analogues; adsorption; zeolite conundrum; chemical intuition; METAL-ORGANIC FRAMEWORKS; CRYSTAL-STRUCTURES; CHEMISTRY; MEMBRANES; SILICA;
D O I
10.1021/jacsau.5c00077
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zeolitic imidazolate frameworks (ZIFs), metal-organic analogues of zeolites, hold great potential for carbon-neutral applications due to their exceptional stability and porosity. However, ZIF discovery has been hindered by the limited topologies resulting from a mismatch between numerous predicted and few synthesized zeolitic networks. To address this, we propose a data-driven search algorithm using structural descriptors of known materials as a screening tool. From over 4 million zeolite structures, we identified potential ZIF candidates based on O-T-O angle differences, vertex symbols, and T-O-T angles. Energy calculations facilitated the ranking of ZIFs by their synthesizability, leading to the successful synthesis of three ZIFs with two novel topologies: UZIF-31 (uft1) and UZIF-32, -33 (uft2). Notably, UZIF-33 exhibited remarkable CO2 selective adsorption. This study highlights the synergistic potential of combining structural predictions with chemical intuition to advance material discovery.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Data-driven parameter optimization for the synthesis of high-quality zeolitic imidazolate frameworks via a microdroplet route
    He, Xiang
    Chen, Jianping
    Albin, Shane
    Zhu, Zan
    Wang, Wei-Ning
    ADVANCED POWDER TECHNOLOGY, 2021, 32 (01) : 266 - 271
  • [2] Pressure-driven mechanical anisotropy and destabilization in zeolitic imidazolate frameworks
    Maul, Jefferson
    Ryder, Matthew R.
    Ruggiero, Michael T.
    Erba, Alessandro
    PHYSICAL REVIEW B, 2019, 99 (01)
  • [3] Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery
    Arunima K. Singh
    Joseph H. Montoya
    John M. Gregoire
    Kristin A. Persson
    Nature Communications, 10
  • [4] Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery
    Singh, Arunima K.
    Montoya, Joseph H.
    Gregoire, John M.
    Persson, Kristin A.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [5] INOR 964-High throughput synthesis and discovery of zeolitic imidazolate frameworks
    Banerjee, Rahul
    Phan, Anh
    Knobler, Carolyn B.
    Yaghi, Omar M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 235
  • [6] Data mining for predicting gas diffusivity in zeolitic-imidazolate frameworks (ZIFs)
    Krokidas, Panagiotis
    Karozis, Stelios
    Moncho, Salvador
    Giannakopoulos, George
    Brothers, Edward N.
    Kainourgiakis, Michael E.
    Economou, Ioannis G.
    Steriotis, Theodore A.
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (26) : 13697 - 13703
  • [7] Photothermal-driven drug-delivery nanoplatform based on plasmonic zeolitic imidazolate frameworks
    Carrillo Carrion, Carolina
    del Pino, Pablo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [8] A data-driven search for oil
    Ritchie, Russ
    Lastiwka, Dan
    Control, 2013, 26 (04): : 85 - 88
  • [9] Data-driven discovery of quasiperiodically driven dynamics
    Das, Suddhasattwa
    Mustavee, Shakib
    Agarwal, Shaurya
    NONLINEAR DYNAMICS, 2025, 113 (05) : 4097 - 4120
  • [10] The data-driven discovery of partial differential equations by symbolic genetic algorithm
    Sun, Shifei
    Tian, Shifang
    Wang, Yuduo
    Li, Biao
    NONLINEAR DYNAMICS, 2024, 112 (22) : 19871 - 19885