Benchmarking Quantum Circuit Transformation With QKNOB Circuits

被引:0
|
作者
Li, Sanjiang [1 ]
Zhou, Xiangzhen [2 ]
Feng, Yuan [3 ]
机构
[1] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Software & Informat, Ultimo, NSW 2007, Australia
[2] Nanjing Tech Univ, Nanjing 210037, Peoples R China
[3] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100190, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Logic gates; Qubit; Quantum circuit; Benchmark testing; Performance evaluation; Costs; Approximation algorithms; Quantum mechanics; Transforms; Scalability; Architecture; hardware/software co-design; performance optimization; placement; routing; ISOMORPHISM;
D O I
10.1109/TQE.2025.3527399
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Current superconducting quantum devices impose strict connectivity constraints on quantum circuit execution, necessitating circuit transformation before executing quantum circuits on physical hardware. Numerous quantum circuit transformation (QCT) algorithms have been proposed. To enable faithful evaluation of state-of-the-art QCT algorithms, this article introduces qubit mapping benchmark with known near-optimality (QKNOB), a novel benchmark construction method for QCT. QKNOB circuits have built-in transformations with near-optimal (close to the theoretical optimum) swap count and depth overhead. QKNOB provides general and unbiased evaluation of QCT algorithms. Using QKNOB, we demonstrate that SABRE, the default Qiskit compiler, consistently achieves the best performance on the 53-qubit IBM Q Rochester and Google Sycamore devices for both swap count and depth objectives. Our results also reveal significant performance gaps relative to the near-optimal transformation costs of QKNOB. Our construction algorithm and benchmarks are open-source.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] An Improved Circuit Transformation Technique for Nearest Neighbor Implementation of Quantum Circuits
    Kundu, Sourodeep
    Kumar, Subham
    Biswal, Laxmidhar
    Bandyopadhyay, Chandan
    Bhattacharjee, Anirban
    Rahaman, Hafizur
    2024 28th International Symposium on VLSI Design and Test, VDAT 2024, 2024,
  • [2] Benchmarking characterization methods for noisy quantum circuits
    Dahlhauser, Megan L.
    Humble, Travis S.
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [3] Quantum circuits, path and quantum bifurcations (for basic of quantum computation and circuit)
    Matsuura, Hiroyuki
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2008, 11 (03): : 253 - 259
  • [4] Scalable Randomized Benchmarking of Quantum Computers Using Mirror Circuits
    Proctor, Timothy
    Seritan, Stefan
    Rudinger, Kenneth
    Nielsen, Erik
    Blume-Kohout, Robin
    Young, Kevin
    PHYSICAL REVIEW LETTERS, 2022, 129 (15)
  • [5] A generative modeling approach for benchmarking and training shallow quantum circuits
    Marcello Benedetti
    Delfina Garcia-Pintos
    Oscar Perdomo
    Vicente Leyton-Ortega
    Yunseong Nam
    Alejandro Perdomo-Ortiz
    npj Quantum Information, 5
  • [6] A generative modeling approach for benchmarking and training shallow quantum circuits
    Benedetti, Marcello
    Garcia-Pintos, Delfina
    Perdomo, Oscar
    Leyton-Ortega, Vicente
    Nam, Yunseong
    Perdomo-Ortiz, Alejandro
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [7] Design of a quantum repeater using quantum circuits and benchmarking its performance on an IBM quantum computer
    Das, Sowmitra
    Rahman, Md. Saifur
    Majumdar, Mahbub
    QUANTUM INFORMATION PROCESSING, 2021, 20 (07)
  • [8] Design of a quantum repeater using quantum circuits and benchmarking its performance on an IBM quantum computer
    Sowmitra Das
    Md. Saifur Rahman
    Mahbub Majumdar
    Quantum Information Processing, 2021, 20
  • [9] Electric circuits for universal quantum gates and quantum Fourier transformation
    Ezawa, Motohiko
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [10] Quantum transport, quantum effects and circuit functionality of nanostructured electronic circuits
    Mathis, W
    Felgenhauer, F
    Fabel, S
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2004, 32 (05) : 407 - 424