The Borel complexity of the space of left-orderings, low-dimensional topology, and dynamics

被引:0
|
作者
Calderoni, Filippo [1 ]
Clay, Adam [2 ]
机构
[1] Rutgers State Univ, Hill Ctr Math Sci, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Univ Manitoba, Dept Math, Winnipeg, MB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1112/jlms.70024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop new tools to analyze the complexity of the conjugacy equivalence relation Elo(G)$E_\mathsf {lo}(G)$, whenever G$G$ is a left-orderable group. Our methods are used to demonstrate nonsmoothness of Elo(G)$E_\mathsf {lo}(G)$ for certain groups G$G$ of dynamical origin, such as certain amalgams constructed from Thompson's group F$F$. We also initiate a systematic analysis of Elo(pi 1(M))$E_\mathsf {lo}(\pi _1(M))$, where M$M$ is a 3-manifold. We prove that if M$M$ is not prime, then Elo(pi 1(M))$E_\mathsf {lo}(\pi _1(M))$ is a universal countable Borel equivalence relation, and show that in certain cases the complexity of Elo(pi 1(M))$E_\mathsf {lo}(\pi _1(M))$ is bounded below by the complexity of the conjugacy equivalence relation arising from the fundamental group of each of the JSJ pieces of M$M$. We also prove that if M$M$ is the complement of a nontrivial knot in S3$S<^>3$ then Elo(pi 1(M))$E_\mathsf {lo}(\pi _1(M))$ is not smooth, and show how determining smoothness of Elo(pi 1(M))$E_\mathsf {lo}(\pi _1(M))$ for all knot manifolds M$M$ is related to the L-space conjecture.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Low-dimensional dynamics of a turbulent axisymmetric wake
    Rigas, G.
    Oxlade, A. R.
    Morgans, A. S.
    Morrison, J. F.
    JOURNAL OF FLUID MECHANICS, 2014, 755 : R51 - R511
  • [43] Controlling the Topology of Low-Dimensional Organic Nanostructures with Surface Templates
    Fan Qi-Tang
    Zhu Jun-Fa
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (07) : 1288 - 1296
  • [44] Charge dynamics in low-dimensional quantum systems
    Ruzicka, B
    Vescoli, V
    Degiorgi, L
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (34) : S2501 - S2511
  • [45] Atomistic spin dynamics of low-dimensional magnets
    Bergqvist, Lars
    Taroni, Andrea
    Bergman, Anders
    Etz, Corina
    Eriksson, Olle
    PHYSICAL REVIEW B, 2013, 87 (14)
  • [46] Spin dynamics in the low-dimensional magnet TiOCl
    Zakharov, DV
    Deisenhofer, J
    von Nidda, HAK
    Lunkenheimer, P
    Hemberger, J
    Hoinkis, M
    Klemm, M
    Sing, M
    Claessen, R
    Eremin, MV
    Horn, S
    Loidl, A
    PHYSICAL REVIEW B, 2006, 73 (09)
  • [47] Recombination dynamics in low-dimensional nitride semiconductors
    Kawakami, Y
    Kaneta, A
    Omae, K
    Shikanai, A
    Okamoto, K
    Marutsuki, G
    Narukawa, Y
    Mukai, T
    Fujita, S
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2003, 240 (02): : 337 - 343
  • [48] Spin dynamics in low-dimensional magnetic structures
    Stamps, RL
    AUSTRALIAN JOURNAL OF PHYSICS, 2000, 53 (04): : 567 - 574
  • [49] Low-dimensional dynamics of structured random networks
    Aljadeff, Johnatan
    Renfrew, David
    Vegue, Marina
    Sharpee, Tatyana O.
    PHYSICAL REVIEW E, 2016, 93 (02)
  • [50] Magnetospheric dynamics from a low-dimensional nonlinear dynamics model
    Doxas, I.
    Horton, W.
    Physics of Plasmas, 1999, 6 (5 I): : 2198 - 2202