The Borel complexity of the space of left-orderings, low-dimensional topology, and dynamics

被引:0
|
作者
Calderoni, Filippo [1 ]
Clay, Adam [2 ]
机构
[1] Rutgers State Univ, Hill Ctr Math Sci, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Univ Manitoba, Dept Math, Winnipeg, MB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1112/jlms.70024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop new tools to analyze the complexity of the conjugacy equivalence relation Elo(G)$E_\mathsf {lo}(G)$, whenever G$G$ is a left-orderable group. Our methods are used to demonstrate nonsmoothness of Elo(G)$E_\mathsf {lo}(G)$ for certain groups G$G$ of dynamical origin, such as certain amalgams constructed from Thompson's group F$F$. We also initiate a systematic analysis of Elo(pi 1(M))$E_\mathsf {lo}(\pi _1(M))$, where M$M$ is a 3-manifold. We prove that if M$M$ is not prime, then Elo(pi 1(M))$E_\mathsf {lo}(\pi _1(M))$ is a universal countable Borel equivalence relation, and show that in certain cases the complexity of Elo(pi 1(M))$E_\mathsf {lo}(\pi _1(M))$ is bounded below by the complexity of the conjugacy equivalence relation arising from the fundamental group of each of the JSJ pieces of M$M$. We also prove that if M$M$ is the complement of a nontrivial knot in S3$S<^>3$ then Elo(pi 1(M))$E_\mathsf {lo}(\pi _1(M))$ is not smooth, and show how determining smoothness of Elo(pi 1(M))$E_\mathsf {lo}(\pi _1(M))$ for all knot manifolds M$M$ is related to the L-space conjecture.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] HOMOLOGY OF GROUP SYSTEMS WITH APPLICATIONS TO LOW-DIMENSIONAL TOPOLOGY
    LOMONACO, SJ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 3 (03) : 1049 - 1052
  • [32] Higher-order intersections in low-dimensional topology
    Conant, Jim
    Schneiderman, Rob
    Teichner, Peter
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (20) : 8131 - 8138
  • [33] LOW-DIMENSIONAL TOPOLOGY - BROWN,R, THICKSTUN,TL
    FENN, R
    MATHEMATICAL INTELLIGENCER, 1984, 6 (02): : 64 - 64
  • [34] Algorithms in low-dimensional topology: Holonomic parametrization of knots
    Gamkrelidze A.
    Journal of Mathematical Sciences, 2013, 195 (2) : 139 - 145
  • [35] Learning Contrastive Embedding in Low-Dimensional Space
    Chen, Shuo
    Gong, Chen
    Li, Jun
    Yang, Jian
    Niu, Gang
    Sugiyama, Masashi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [36] Embedding gene sets in low-dimensional space
    Hoinka, Jan
    Przytycka, Teresa M.
    NATURE MACHINE INTELLIGENCE, 2020, 2 (07) : 367 - 368
  • [37] Embedding gene sets in low-dimensional space
    Jan Hoinka
    Teresa M. Przytycka
    Nature Machine Intelligence, 2020, 2 : 367 - 368
  • [38] Empirical low-dimensional manifolds in composition space
    Yang, Yue
    Pope, Stephen B.
    Chen, Jacqueline H.
    COMBUSTION AND FLAME, 2013, 160 (10) : 1967 - 1980
  • [39] Low-dimensional dynamics of a turbulent wall flow
    Jiménez, J
    Simens, MP
    JOURNAL OF FLUID MECHANICS, 2001, 435 : 81 - 91
  • [40] Low-dimensional manifold of actin polymerization dynamics
    Floyd, Carlos
    Jarzynski, Christopher
    Papoian, Garegin
    NEW JOURNAL OF PHYSICS, 2017, 19