The Borel complexity of the space of left-orderings, low-dimensional topology, and dynamics

被引:0
|
作者
Calderoni, Filippo [1 ]
Clay, Adam [2 ]
机构
[1] Rutgers State Univ, Hill Ctr Math Sci, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Univ Manitoba, Dept Math, Winnipeg, MB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1112/jlms.70024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop new tools to analyze the complexity of the conjugacy equivalence relation Elo(G)$E_\mathsf {lo}(G)$, whenever G$G$ is a left-orderable group. Our methods are used to demonstrate nonsmoothness of Elo(G)$E_\mathsf {lo}(G)$ for certain groups G$G$ of dynamical origin, such as certain amalgams constructed from Thompson's group F$F$. We also initiate a systematic analysis of Elo(pi 1(M))$E_\mathsf {lo}(\pi _1(M))$, where M$M$ is a 3-manifold. We prove that if M$M$ is not prime, then Elo(pi 1(M))$E_\mathsf {lo}(\pi _1(M))$ is a universal countable Borel equivalence relation, and show that in certain cases the complexity of Elo(pi 1(M))$E_\mathsf {lo}(\pi _1(M))$ is bounded below by the complexity of the conjugacy equivalence relation arising from the fundamental group of each of the JSJ pieces of M$M$. We also prove that if M$M$ is the complement of a nontrivial knot in S3$S<^>3$ then Elo(pi 1(M))$E_\mathsf {lo}(\pi _1(M))$ is not smooth, and show how determining smoothness of Elo(pi 1(M))$E_\mathsf {lo}(\pi _1(M))$ for all knot manifolds M$M$ is related to the L-space conjecture.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Symplectic, contact and low-dimensional topology - Preface
    Matic, G
    McCrory, C
    TOPOLOGY AND ITS APPLICATIONS, 1998, 88 (1-2) : 1 - 1
  • [22] Laver’s results and low-dimensional topology
    Patrick Dehornoy
    Archive for Mathematical Logic, 2016, 55 : 49 - 83
  • [23] Knots, low-dimensional topology and applications Preface
    Adams, Colin C.
    Gordon, Cameron McA
    Jones, Vaughan F. R.
    Kauffman, Louis H.
    Lambropoulou, Sofia
    Millett, Kenneth
    Przytycki, Jozef H.
    Ricca, Renzo
    Sazdanovic, Radmila
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2019, 28 (11)
  • [24] On decidability and complexity of low-dimensional robot games
    Niskanen, R.
    Potapov, I
    Reichert, J.
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2020, 107 : 124 - 141
  • [25] Dynamics of low-dimensional dipolar systems
    Sun, JM
    Luo, WL
    PHYSICAL REVIEW E, 1997, 56 (04): : 3986 - 3992
  • [26] Dynamics of low-dimensional systems PREFACE
    Bernasconi, M.
    Miret-Artes, S.
    Toennies, J. P.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (10)
  • [27] Carrier Dynamics in Low-dimensional Perovskites
    Li, Mingjie
    Bhaumik, Saikat
    Mhaisalkar, Subodh
    Mathews, Nripan
    Sum, Tze Chien
    7TH IEEE INTERNATIONAL NANOELECTRONICS CONFERENCE (INEC) 2016, 2016,
  • [28] Nonequilibrium dynamics in low-dimensional systems
    Evans, MR
    Blythe, RA
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 313 (1-2) : 110 - 152
  • [29] Cost function for low-dimensional manifold topology assessment
    Zdybal, Kamila
    Armstrong, Elizabeth
    Sutherland, James C.
    Parente, Alessandro
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [30] Cost function for low-dimensional manifold topology assessment
    Kamila Zdybał
    Elizabeth Armstrong
    James C. Sutherland
    Alessandro Parente
    Scientific Reports, 12