ON ESTIMATING LINK PREDICTION UNCERTAINTY USING STOCHASTIC CENTERING

被引:0
|
作者
Trivedi, Puja [1 ]
Koutra, Danai [1 ]
Thiagarajan, Jayaraman J. [2 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Lawrence Livermore Natl Lab, Livermore, KS USA
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024 | 2024年
关键词
Graph Neural Networks; uncertainty; link prediction; auxiliary tasks;
D O I
10.1109/ICASSP48485.2024.10445967
中图分类号
学科分类号
摘要
Accurate confidence estimates are crucial for safe graph neural network (GNN) deployment, yet link prediction (LP) calibration is understudied. We provide novel insights into LP calibration by highlighting the importance of meaningful node-level uncertainties. In response, we propose E-Delta UQ, an architecture-agnostic framework leveraging stochastic centering to incorporate epistemic uncertainty into GNNs. Our work provides principles and three E-Delta UQ variants to improve trust in LP models, while introducing minimal overhead. Key results demonstrate properly handling node-level uncertainty improves edge calibration. We evaluate E-Delta UQ variants on citation networks and find that intermediate stochastic layers outperform alternatives by producing better node uncertainties. E-Delta UQ reduces calibration error by 15-50% and maintains comparable prediction fidelity.
引用
收藏
页码:6810 / 6814
页数:5
相关论文
共 50 条
  • [41] Estimating the optimum of a stochastic system using simulation
    Rollans, S
    McLeish, DL
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2002, 72 (05) : 357 - 377
  • [42] On the link between contaminant source release conditions and plume prediction uncertainty
    de Barros, Felipe P. J.
    Nowak, Wolfgang
    JOURNAL OF CONTAMINANT HYDROLOGY, 2010, 116 (1-4) : 24 - 34
  • [43] IMPROVED LINK PREDICTION USING PCA
    Ankita
    Singh, Nanhay
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (04): : 578 - 585
  • [44] Prediction of PET Transfer Uncertainty by DIR Error Estimating Software, AUTODIRECT
    Kim, H.
    Chen, J.
    Phillips, J.
    Kirby, N.
    MEDICAL PHYSICS, 2016, 43 (06) : 3737 - 3737
  • [45] Dynamic traffic demand uncertainty prediction using radio-frequency identification data and link volume data
    Liu, Yu
    Liu, Zhao
    Li, Xiugang
    Huang, Wei
    Wei, Yun
    Cao, Jinde
    Guo, Jianhua
    IET INTELLIGENT TRANSPORT SYSTEMS, 2019, 13 (08) : 1309 - 1317
  • [46] Estimating uncertainty
    Olive Heffernan
    Nature Climate Change, 2009, 1 (909) : 99 - 100
  • [47] Estimating Uncertainty
    Maroto, Alicia
    Boque, Ricard
    Heyden, Yvan Vander
    LC GC EUROPE, 2008, 21 (12) : 628 - 631
  • [48] Distributed stochastic gradient descent for link prediction in signed social networks
    Han Zhang
    Gang Wu
    Qing Ling
    EURASIP Journal on Advances in Signal Processing, 2019
  • [49] Estimating the link between trade uncertainty, pandemic uncertainty and food price stability in Togo: New evidence for an asymmetric analysis
    Sodji, Kuamvi
    REVIEW OF DEVELOPMENT ECONOMICS, 2023, 27 (02) : 1113 - 1134
  • [50] A study of stochastic mixed membership models for link prediction in social networks
    Dulac, Adrien
    Gaussier, Eric
    Largeron, Christine
    2017 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2017, : 706 - 715