ON ESTIMATING LINK PREDICTION UNCERTAINTY USING STOCHASTIC CENTERING

被引:0
|
作者
Trivedi, Puja [1 ]
Koutra, Danai [1 ]
Thiagarajan, Jayaraman J. [2 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Lawrence Livermore Natl Lab, Livermore, KS USA
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024 | 2024年
关键词
Graph Neural Networks; uncertainty; link prediction; auxiliary tasks;
D O I
10.1109/ICASSP48485.2024.10445967
中图分类号
学科分类号
摘要
Accurate confidence estimates are crucial for safe graph neural network (GNN) deployment, yet link prediction (LP) calibration is understudied. We provide novel insights into LP calibration by highlighting the importance of meaningful node-level uncertainties. In response, we propose E-Delta UQ, an architecture-agnostic framework leveraging stochastic centering to incorporate epistemic uncertainty into GNNs. Our work provides principles and three E-Delta UQ variants to improve trust in LP models, while introducing minimal overhead. Key results demonstrate properly handling node-level uncertainty improves edge calibration. We evaluate E-Delta UQ variants on citation networks and find that intermediate stochastic layers outperform alternatives by producing better node uncertainties. E-Delta UQ reduces calibration error by 15-50% and maintains comparable prediction fidelity.
引用
收藏
页码:6810 / 6814
页数:5
相关论文
共 50 条
  • [31] ESTIMATING MODEL RELIABILITY USING DATA WITH UNCERTAINTY
    WARWICK, JJ
    CALE, WG
    ECOLOGICAL MODELLING, 1988, 41 (3-4) : 169 - 181
  • [32] A Hierarchical Variational Neural Uncertainty Model for Stochastic Video Prediction
    Chatterjee, Moitreya
    Ahuja, Narendra
    Cherian, Anoop
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9731 - 9741
  • [33] Stochastic residual-error analysis for estimating hydrologic model predictive uncertainty
    Hantush, Mohamed M.
    Kalin, Latif
    JOURNAL OF HYDROLOGIC ENGINEERING, 2008, 13 (07) : 585 - 596
  • [34] ESTIMATING THE UNCERTAINTY IN STEPPED SINE MEASUREMENTS PERFORMED UNDER PARTIALLY STOCHASTIC CONDITIONS
    Peerlings, Luck
    Boden, Hans
    Boij, Susann
    PROCEEDINGS OF THE 22ND INTERNATIONAL CONGRESS ON SOUND AND VIBRATION: MAJOR CHALLENGES IN ACOUSTICS, NOISE AND VIBRATION RESEARCH, 2015, 2015,
  • [35] ACCOUNT FOR CONSTRAINTS IN ESTIMATING PRECISE PONT POSITIONING ERROR UNDER STOCHASTIC UNCERTAINTY
    Zaitsev, O. V.
    2017 24TH SAINT PETERSBURG INTERNATIONAL CONFERENCE ON INTEGRATED NAVIGATION SYSTEMS (ICINS), 2017,
  • [36] Estimating Increased Sediment Loads Following Wildfire: Sampling Strategies and Stochastic Uncertainty
    Sheridan, G. J.
    Lane, P. N. J.
    Sherwin, C. B.
    Noske, P. J.
    MODSIM 2007: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: LAND, WATER AND ENVIRONMENTAL MANAGEMENT: INTEGRATED SYSTEMS FOR SUSTAINABILITY, 2007, : 2410 - 2416
  • [37] DotHash: Estimating Set Similarity Metrics for Link Prediction and Document Deduplication
    Nunes, Igor
    Heddes, Mike
    Verges, Pere
    Abraham, Danny
    Veidenbaum, Alex
    Nicolau, Alex
    Givargis, Tony
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 1758 - 1769
  • [38] Estimating Domain Specificity for Effective Crowdsourcing of Link Prediction and Schema Mapping
    Gadiraju, Ujwal
    Siehndel, Patrick
    Dietze, Stefan
    PROCEEDINGS OF THE 2016 ACM WEB SCIENCE CONFERENCE (WEBSCI'16), 2016, : 323 - 324
  • [39] DotHash: Estimating Set Similarity Metrics for Link Prediction and Document Deduplication
    Nunes, Igor
    Heddes, Mike
    Vergés, Pere
    Abraham, Danny
    Veidenbaum, Alex
    Nicolau, Alex
    Givargis, Tony
    Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2023, : 1758 - 1769
  • [40] DESIGN CENTERING BY YIELD PREDICTION
    ANTREICH, KJ
    KOBLITZ, RK
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1982, 29 (02): : 88 - 96