ON ESTIMATING LINK PREDICTION UNCERTAINTY USING STOCHASTIC CENTERING

被引:0
|
作者
Trivedi, Puja [1 ]
Koutra, Danai [1 ]
Thiagarajan, Jayaraman J. [2 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Lawrence Livermore Natl Lab, Livermore, KS USA
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024 | 2024年
关键词
Graph Neural Networks; uncertainty; link prediction; auxiliary tasks;
D O I
10.1109/ICASSP48485.2024.10445967
中图分类号
学科分类号
摘要
Accurate confidence estimates are crucial for safe graph neural network (GNN) deployment, yet link prediction (LP) calibration is understudied. We provide novel insights into LP calibration by highlighting the importance of meaningful node-level uncertainties. In response, we propose E-Delta UQ, an architecture-agnostic framework leveraging stochastic centering to incorporate epistemic uncertainty into GNNs. Our work provides principles and three E-Delta UQ variants to improve trust in LP models, while introducing minimal overhead. Key results demonstrate properly handling node-level uncertainty improves edge calibration. We evaluate E-Delta UQ variants on citation networks and find that intermediate stochastic layers outperform alternatives by producing better node uncertainties. E-Delta UQ reduces calibration error by 15-50% and maintains comparable prediction fidelity.
引用
收藏
页码:6810 / 6814
页数:5
相关论文
共 50 条
  • [21] Cyclostationary Stochastic Jitter Measurement Method With Uncertainty Prediction
    Schweiger, Thomas
    Krueger, Benjamin
    Wiedmann, Frank
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (09) : 2371 - 2379
  • [23] Stochastic Link Flow Model for Signalized Traffic Networks with Uncertainty in Demand
    Lin, S.
    Pan, T. L.
    Lam, W. H. K.
    Zhong, R. X.
    De Schutter, B.
    IFAC PAPERSONLINE, 2018, 51 (09): : 458 - 463
  • [24] Classification using link prediction
    Fadaee, Seyed Amin
    Haeri, Maryam Amir
    NEUROCOMPUTING, 2019, 359 : 395 - 407
  • [25] Estimating node indirect interaction duration to enhance link prediction
    Gundala, Laxmi Amulya
    Spezzano, Francesca
    SOCIAL NETWORK ANALYSIS AND MINING, 2019, 9 (01)
  • [26] Estimating node indirect interaction duration to enhance link prediction
    Laxmi Amulya Gundala
    Francesca Spezzano
    Social Network Analysis and Mining, 2019, 9
  • [27] Safe Perception-Based Control under Stochastic Sensor Uncertainty using Conformal Prediction
    Yang, Shuo
    Pappas, George J.
    Mangharam, Rahul
    Lindemann, Lars
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 6072 - 6078
  • [28] Link prediction in stochastic social networks: Learning automata approach
    Moradabadi, Behnaz
    Meybodi, Mohammad Reza
    JOURNAL OF COMPUTATIONAL SCIENCE, 2018, 24 : 313 - 328
  • [29] Quantifying the Uncertainty Associated with Estimating Sediment Concentrations in Open Channel Flows Using the Stochastic Particle Tracking Method
    Oh, Jungsun
    Tsai, Christina W.
    Choi, Sung-Uk
    JOURNAL OF HYDRAULIC ENGINEERING, 2015, 141 (12)
  • [30] Estimating demand uncertainty using judgmental forecasts
    Gaur, Vishal
    Kesavan, Saravanan
    Raman, Ananth
    Fisher, Marshall L.
    M&SOM-MANUFACTURING & SERVICE OPERATIONS MANAGEMENT, 2007, 9 (04) : 480 - 491