Isospectral reductions and quantum walks on graphs

被引:0
|
作者
Kempton, Mark [1 ]
Tolbert, John [2 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[2] Wake Forest Univ, Dept Math, Winston Salem, NC 27109 USA
来源
ALGEBRAIC COMBINATORICS | 2024年 / 7卷 / 01期
关键词
isospectral reduction; equitable partition; quantum walk; perfect state transfer; FRACTIONAL REVIVAL; STATE TRANSFER; EQUIVALENCE; STABILITY;
D O I
10.5802/alco.333
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new formula for computing the isospectral reduction of a matrix (and graph) down to a submatrix (or subgraph). Using this, we generalize the notion of isospectral reductions. In addition, we give a procedure for constructing a matrix whose isospectral reduction down to a submatrix is given. We also prove that the isospectral reduction completely determines the restriction of the quantum walk transition matrix to a subset. Using these, we construct new families of simple graphs exhibiting perfect quantum state transfer.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Scattering from isospectral quantum graphs
    Band, R.
    Sawicki, A.
    Smilansky, U.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (41)
  • [2] Controllability of quantum walks on graphs
    Albertini, Francesca
    D'Alessandro, Domenico
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2012, 24 (03) : 321 - 349
  • [3] Staggered quantum walks on graphs
    Portugal, Renato
    PHYSICAL REVIEW A, 2016, 93 (06)
  • [4] Quantum walks on directed graphs
    Montanaro, Ashley
    QUANTUM INFORMATION & COMPUTATION, 2007, 7 (1-2) : 93 - 102
  • [5] Quantum walks on quotient graphs
    Krovi, Hari
    Brun, Todd A.
    PHYSICAL REVIEW A, 2007, 75 (06)
  • [6] Quantum walks on general graphs
    Kendon, Viv
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (05) : 791 - 805
  • [7] Controllability of quantum walks on graphs
    Francesca Albertini
    Domenico D’Alessandro
    Mathematics of Control, Signals, and Systems, 2012, 24 : 321 - 349
  • [8] Quantum walks on Cayley graphs
    Acevedo, OL
    Gobron, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (03): : 585 - 599
  • [9] Open quantum walks on graphs
    Attal, S.
    Petruccione, F.
    Sinayskiy, I.
    PHYSICS LETTERS A, 2012, 376 (18) : 1545 - 1548
  • [10] From quantum graphs to quantum random walks
    Tanner, GK
    NON-LINEAR DYNAMICS AND FUNDAMENTAL INTERACTIONS, 2006, 213 : 69 - 87