Isospectral reductions and quantum walks on graphs

被引:0
|
作者
Kempton, Mark [1 ]
Tolbert, John [2 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[2] Wake Forest Univ, Dept Math, Winston Salem, NC 27109 USA
来源
ALGEBRAIC COMBINATORICS | 2024年 / 7卷 / 01期
关键词
isospectral reduction; equitable partition; quantum walk; perfect state transfer; FRACTIONAL REVIVAL; STATE TRANSFER; EQUIVALENCE; STABILITY;
D O I
10.5802/alco.333
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new formula for computing the isospectral reduction of a matrix (and graph) down to a submatrix (or subgraph). Using this, we generalize the notion of isospectral reductions. In addition, we give a procedure for constructing a matrix whose isospectral reduction down to a submatrix is given. We also prove that the isospectral reduction completely determines the restriction of the quantum walk transition matrix to a subset. Using these, we construct new families of simple graphs exhibiting perfect quantum state transfer.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Quantum walks on graphs and quantum scattering theory
    Feldman, E
    Hillery, M
    CODING THEORY AND QUANTUM COMPUTING, 2005, 381 : 71 - 95
  • [12] Asymptotically isospectral quantum graphs and generalised trigonometric polynomials
    Kurasov, Pavel
    Suhr, Rune
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 488 (01)
  • [13] The isospectral fruits of representation theory: quantum graphs and drums
    Band, Ram
    Parzanchevski, Ori
    Ben-Shach, Gilad
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (17)
  • [14] Nodal domains on isospectral quantum graphs: the resolution of isospectrality?
    Band, Ram
    Shapira, Talia
    Smilansky, Uzy
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (45): : 13999 - 14014
  • [15] Localization of quantum walks on finite graphs
    Hu, Yang-Yi
    Chen, Ping-Xing
    CHINESE PHYSICS B, 2016, 25 (12)
  • [16] Relation between Quantum Walks with Tails and Quantum Walks with Sinks on Finite Graphs
    Konno, Norio
    Segawa, Etsuo
    Stefanak, Martin
    SYMMETRY-BASEL, 2021, 13 (07):
  • [17] gwViz: Visualisation of quantum walks on graphs
    Berry, Scott D.
    Bourke, Paul
    Wang, Jingbo B.
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (10) : 2295 - 2302
  • [18] Coined quantum walks on weighted graphs
    Wong, Thomas G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (47)
  • [19] Localization of quantum walks on finite graphs
    胡杨熠
    陈平形
    Chinese Physics B, 2016, (12) : 172 - 177
  • [20] Quantum Walks on Regular Graphs and Eigenvalues
    Godsil, Chris
    Guo, Krystal
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):