Isospectral reductions and quantum walks on graphs

被引:0
|
作者
Kempton, Mark [1 ]
Tolbert, John [2 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[2] Wake Forest Univ, Dept Math, Winston Salem, NC 27109 USA
来源
ALGEBRAIC COMBINATORICS | 2024年 / 7卷 / 01期
关键词
isospectral reduction; equitable partition; quantum walk; perfect state transfer; FRACTIONAL REVIVAL; STATE TRANSFER; EQUIVALENCE; STABILITY;
D O I
10.5802/alco.333
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new formula for computing the isospectral reduction of a matrix (and graph) down to a submatrix (or subgraph). Using this, we generalize the notion of isospectral reductions. In addition, we give a procedure for constructing a matrix whose isospectral reduction down to a submatrix is given. We also prove that the isospectral reduction completely determines the restriction of the quantum walk transition matrix to a subset. Using these, we construct new families of simple graphs exhibiting perfect quantum state transfer.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Quantum Interference, Graphs, Walks, and Polynomials
    Tsuji, Yuta
    Estrada, Ernesto
    Movassagh, Ramis
    Hoffmann, Roald
    CHEMICAL REVIEWS, 2018, 118 (10) : 4887 - 4911
  • [22] Coined quantum walks on percolation graphs
    Leung, Godfrey
    Knott, Paul
    Bailey, Joe
    Kendon, Viv
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [23] Using quantum walks to unitarily represent random walks on finite graphs
    Andrade, Matheus Guedes de
    Marquezino, Franklin de Lima
    Figueiredo, Daniel Ratton
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [24] Exploring scalar quantum walks on cayley graphs
    Quantum Information and Communication, Ecole Polytechnique, Universite Libre de Bruxelles, B-1050 Brussels, Belgium
    不详
    不详
    Quantum Inf. Comput., 2008, 1-2 (0068-0081):
  • [25] Quantum walks on blow-up graphs
    Bhattacharjya, Bikash
    Monterde, Hermie
    Pal, Hiranmoy
    arXiv, 2023,
  • [26] Szegedy quantum walks with memory on regular graphs
    Dan Li
    Ying Liu
    Yu-Guang Yang
    Juan Xu
    Jia-Bin Yuan
    Quantum Information Processing, 2020, 19
  • [27] Exploring scalar quantum walks on Cayley graphs
    Acevedo, Olga Lopez
    Roland, Jeremie
    Cerf, Nicolas J.
    QUANTUM INFORMATION & COMPUTATION, 2008, 8 (1-2) : 68 - 81
  • [28] Generic quantum walks with memory on regular graphs
    Li, Dan
    Mc Gettrick, Michael
    Gao, Fei
    Xu, Jie
    Wen, Qiao-Yan
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [29] Quantum walks as a probe of structural anomalies in graphs
    Hillery, Mark
    Zheng, Hongjun
    Feldman, Edgar
    Reitzner, Daniel
    Buzek, Vladimir
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [30] Perfect State Transfer in Quantum Walks on Graphs
    Kendon, Vivien M.
    Tamon, Christina
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2011, 8 (03) : 422 - 433