Quantum walks on general graphs

被引:67
|
作者
Kendon, Viv [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Opt Sect, London SW7, England
基金
英国工程与自然科学研究理事会;
关键词
quantum walks; quantum algorithms; quantum information;
D O I
10.1142/S0219749906002195
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum walks, both discrete (coined) and continuous time, on a general graph of N vertices with undirected edges are reviewed in some detail. The resource requirements for implementing a quantum walk as a program on a quantum computer are compared and found to be very similar for both discrete and continuous time walks. The role of the oracle, and how it changes if more prior information about the graph is available, is also discussed.
引用
收藏
页码:791 / 805
页数:15
相关论文
共 50 条
  • [1] Solid State Implementation of Quantum Random Walks on General Graphs
    Manouchehri, K.
    Wang, J. B.
    SOLID-STATE QUANTUM COMPUTING, PROCEEDINGS, 2008, 1074 : 56 - 61
  • [2] Controllability of quantum walks on graphs
    Albertini, Francesca
    D'Alessandro, Domenico
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2012, 24 (03) : 321 - 349
  • [3] Staggered quantum walks on graphs
    Portugal, Renato
    PHYSICAL REVIEW A, 2016, 93 (06)
  • [4] Quantum walks on directed graphs
    Montanaro, Ashley
    QUANTUM INFORMATION & COMPUTATION, 2007, 7 (1-2) : 93 - 102
  • [5] Quantum walks on quotient graphs
    Krovi, Hari
    Brun, Todd A.
    PHYSICAL REVIEW A, 2007, 75 (06)
  • [6] Controllability of quantum walks on graphs
    Francesca Albertini
    Domenico D’Alessandro
    Mathematics of Control, Signals, and Systems, 2012, 24 : 321 - 349
  • [7] Quantum walks on Cayley graphs
    Acevedo, OL
    Gobron, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (03): : 585 - 599
  • [8] Open quantum walks on graphs
    Attal, S.
    Petruccione, F.
    Sinayskiy, I.
    PHYSICS LETTERS A, 2012, 376 (18) : 1545 - 1548
  • [9] Quantum walks on graphs and quantum scattering theory
    Feldman, E
    Hillery, M
    CODING THEORY AND QUANTUM COMPUTING, 2005, 381 : 71 - 95
  • [10] From quantum graphs to quantum random walks
    Tanner, GK
    NON-LINEAR DYNAMICS AND FUNDAMENTAL INTERACTIONS, 2006, 213 : 69 - 87