KORN AND POINCARÜ-KORN INEQUALITIES: A DIFFERENT PERSPECTIVE

被引:0
|
作者
DI Fratta, Giovanni [1 ]
Solombrino, Francesco [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
基金
奥地利科学基金会;
关键词
Korn inequality; Poincare<acute accent>-Korn inequality; Riesz representation the- orem; Weyl lemma; GEOMETRIC RIGIDITY; PROOF;
D O I
10.1090/proc/17053onNovember
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We present a concise point of view on the first and the second Korn's inequality for general exponent p and for a class of domains that includes Lipschitz domains. Our argument is conceptually very simple and, for p = 2, uses only the classical Riesz representation theorem in Hilbert spaces. Moreover, the argument for the general exponent 1 < p < infinity remains the same, the only change being invoking now the q-Riesz representation theorem (with q the harmonic conjugate of p). We also complement the analysis with elementary derivations of Poincare<acute accent>-Korn inequalities in bounded and unbounded domains, which are essential tools in showing the coercivity of variational problems of elasticity but also propedeutic to the proof of the first Korn inequality.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] KORN AND POINCARE-KORN INEQUALITIES: A DIFFERENT PERSPECTIVE
    DI Fratta, Giovanni
    Solombrino, Francesco
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (01) : 143 - 159
  • [2] Korn and Poincaré-Korn inequalities for functions with a small jump set
    Filippo Cagnetti
    Antonin Chambolle
    Lucia Scardia
    Mathematische Annalen, 2022, 383 : 1179 - 1216
  • [3] Weighted Korn and Poincaré-Korn Inequalities in the Euclidean Space and Associated Operators
    Kleber Carrapatoso
    Jean Dolbeault
    Frédéric Hérau
    Stéphane Mischler
    Clément Mouhot
    Archive for Rational Mechanics and Analysis, 2022, 243 : 1565 - 1596
  • [4] ON KORN INEQUALITIES
    KONDRATIEV, VA
    OLEINIK, OA
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 308 (16): : 483 - 487
  • [5] Nonlinear Korn inequalities
    Ciarlet, Philippe G.
    Mardare, Cristinel
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (06): : 1119 - 1134
  • [6] On a canonical extension of Korn's first and Poincaré's inequalities to H(CURL)
    Neff P.
    Pauly D.
    Witsch K.-J.
    Journal of Mathematical Sciences, 2012, 185 (5) : 721 - 727
  • [7] WEIGHTED ASYMPTOTIC KORN AND INTERPOLATION KORN INEQUALITIES WITH SINGULAR WEIGHTS
    Harutyunyan, Davit
    Mikayelyan, Hayk
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (08) : 3635 - 3647
  • [8] Korn and Poincare-Korn inequalities for functions with a small jump set
    Cagnetti, Filippo
    Chambolle, Antonin
    Scardia, Lucia
    MATHEMATISCHE ANNALEN, 2022, 383 (3-4) : 1179 - 1216
  • [9] Some Remarks on Korn Inequalities
    Alain DAMLAMIAN
    Chinese Annals of Mathematics,Series B, 2018, (02) : 335 - 344
  • [10] On inequalities of Korn's type
    Chipot, Michel
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 148 : 199 - 220