KORN AND POINCARÜ-KORN INEQUALITIES: A DIFFERENT PERSPECTIVE
被引:0
|
作者:
DI Fratta, Giovanni
论文数: 0引用数: 0
h-index: 0
机构:
Univ Napoli Federico II, Dipartimento Matemat Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, ItalyUniv Napoli Federico II, Dipartimento Matemat Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
DI Fratta, Giovanni
[1
]
Solombrino, Francesco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Napoli Federico II, Dipartimento Matemat Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, ItalyUniv Napoli Federico II, Dipartimento Matemat Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
Solombrino, Francesco
[1
]
机构:
[1] Univ Napoli Federico II, Dipartimento Matemat Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
. We present a concise point of view on the first and the second Korn's inequality for general exponent p and for a class of domains that includes Lipschitz domains. Our argument is conceptually very simple and, for p = 2, uses only the classical Riesz representation theorem in Hilbert spaces. Moreover, the argument for the general exponent 1 < p < infinity remains the same, the only change being invoking now the q-Riesz representation theorem (with q the harmonic conjugate of p). We also complement the analysis with elementary derivations of Poincare<acute accent>-Korn inequalities in bounded and unbounded domains, which are essential tools in showing the coercivity of variational problems of elasticity but also propedeutic to the proof of the first Korn inequality.
机构:
Calif State Polytech Univ Pomona, Dept Math & Stat, 3801 West Temple Ave, Pomona, CA 91768 USACalif State Polytech Univ Pomona, Dept Math & Stat, 3801 West Temple Ave, Pomona, CA 91768 USA