On a canonical extension of Korn's first and Poincaré's inequalities to H(CURL)

被引:0
|
作者
Neff P. [1 ]
Pauly D. [1 ]
Witsch K.-J. [1 ]
机构
[1] Universität Duisburg-Essen, Fakultät für Mathematik, Campus Essen
关键词
Vector Field; Bounded Domain; Standard Variant; Tensor Field; Lipschitz Boundary;
D O I
10.1007/s10958-012-0955-4
中图分类号
学科分类号
摘要
We prove a Korn-type inequality in H(Curl; Ω, ℝ 3×3) for tensor fields P mapping Ω to ℝ 3×3. More precisely, let Ω ⊂ ℝ 3 be a bounded domain with connected Lipschitz boundary ∂Ω. Then there exists a constant c > 0 such that, for all tensor fields P ∈ H(Curl; Ω, ℝ 3×3), i. e., all P ∈ H(Curl; Ω, ℝ 3×3) with vanishing tangential trace on ∂Ω. Here the rotation and tangential trace are defined row-wise. For compatible P of form P = ∇v, Curl P = 0, where v ∈ H 1(Ω, ℝ 3) is a vector field with components v n for which ∇v n are normal at ∂Ω, estimates (0. 1) is reduced to a non standard variant of Korn's first inequality:, For skew-symmetric P (with sym P = 0), estimates (0. 1) generates a nonstandard version of Poincaré's inequality. Therefore, the estimate is a generalization of two classical inequalities of Poincaré and Korn. Bibliography: 24 titles. © 2012 Springer Science+Business Media, Inc.
引用
收藏
页码:721 / 727
页数:6
相关论文
共 50 条
  • [1] A canonical extension of Korn's first inequality to H(Curl) motivated by gradient plasticity with plastic spin
    Neff, Patrizio
    Pauly, Dirk
    Witsch, Karl-Josef
    [J]. COMPTES RENDUS MATHEMATIQUE, 2011, 349 (23-24) : 1251 - 1254
  • [2] On inequalities of Korn's type
    Chipot, Michel
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 148 : 199 - 220
  • [3] On Korn's inequalities on a surface
    Ciarlet, Philippe G.
    Hou, Yifeng
    Mardare, Cristinel
    [J]. ANALYSIS AND APPLICATIONS, 2016, 14 (03) : 415 - 447
  • [4] On Korn's inequalities in curvilinear coordinates
    Ciarlet, PG
    Mardare, S
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2001, 11 (08): : 1379 - 1391
  • [5] On Korn's inequalities in curvilinear coordinates
    Ciarlet, PG
    Mardare, S
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (04): : 337 - 343
  • [6] Korn's inequalities for piecewise H1 vector fields
    Brenner, SC
    [J]. MATHEMATICS OF COMPUTATION, 2004, 73 (247) : 1067 - 1087
  • [7] Korn's inequalities for generalized external cusps
    Acosta, Gabriel
    Ojea, Ignacio
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (17) : 4935 - 4950
  • [8] Korn's inequalities for thin periodic structures
    Zhikov, V.V.
    Pastukhova, S.E.
    [J]. Doklady Akademii Nauk, 2003, 388 (05) : 588 - 592
  • [9] New identity and Korn's inequalities on a surface
    Ciarlet, Philippe G.
    Hou, Yifeng
    Mardare, Cristinel
    [J]. COMPTES RENDUS MATHEMATIQUE, 2015, 353 (04) : 369 - 374
  • [10] Korn's inequalities for thin periodic structures
    Zhikov, VV
    Pastukhova, SE
    [J]. DOKLADY MATHEMATICS, 2003, 67 (01) : 55 - 59