Korn and Poincaré-Korn inequalities for functions with a small jump set

被引:0
|
作者
Filippo Cagnetti
Antonin Chambolle
Lucia Scardia
机构
[1] University of Sussex,Department of Mathematics
[2] CEREMADE,Department of Mathematics
[3] CNRS and Université Paris-Dauphine PSL,undefined
[4] Heriot-Watt University,undefined
来源
Mathematische Annalen | 2022年 / 383卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove a regularity and rigidity result for displacements in GSBDp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GSBD^p$$\end{document}, for every p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document} and any dimension n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}. We show that a displacement in GSBDp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GSBD^p$$\end{document} with a small jump set coincides with a W1,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,p}$$\end{document} function, up to a small set whose perimeter and volume are controlled by the size of the jump. This generalises to higher dimension a result of Conti, Focardi and Iurlano. A consequence of this is that such displacements satisfy, up to a small set, Poincaré-Korn and Korn inequalities. As an application, we deduce an approximation result which implies the existence of the approximate gradient for displacements in GSBDp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GSBD^p$$\end{document}.
引用
收藏
页码:1179 / 1216
页数:37
相关论文
共 50 条
  • [1] Korn and Poincare-Korn inequalities for functions with a small jump set
    Cagnetti, Filippo
    Chambolle, Antonin
    Scardia, Lucia
    [J]. MATHEMATISCHE ANNALEN, 2022, 383 (3-4) : 1179 - 1216
  • [2] Korn-Poincare Inequalities for Functions with a Small Jump Set
    Chambolle, Antonin
    Conti, Sergio
    Francfort, Gilles
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (04) : 1373 - 1399
  • [3] Weighted Korn and Poincaré-Korn Inequalities in the Euclidean Space and Associated Operators
    Kleber Carrapatoso
    Jean Dolbeault
    Frédéric Hérau
    Stéphane Mischler
    Clément Mouhot
    [J]. Archive for Rational Mechanics and Analysis, 2022, 243 : 1565 - 1596
  • [4] ON KORN INEQUALITIES
    KONDRATIEV, VA
    OLEINIK, OA
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 308 (16): : 483 - 487
  • [5] A Korn-type inequality in SBD for functions with small jump sets
    Friedrich, Manuel
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (13): : 2461 - 2484
  • [6] Nonlinear Korn inequalities
    Ciarlet, Philippe G.
    Mardare, Cristinel
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (06): : 1119 - 1134
  • [7] On a canonical extension of Korn's first and Poincaré's inequalities to H(CURL)
    Neff P.
    Pauly D.
    Witsch K.-J.
    [J]. Journal of Mathematical Sciences, 2012, 185 (5) : 721 - 727
  • [8] WEIGHTED ASYMPTOTIC KORN AND INTERPOLATION KORN INEQUALITIES WITH SINGULAR WEIGHTS
    Harutyunyan, Davit
    Mikayelyan, Hayk
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (08) : 3635 - 3647
  • [9] On inequalities of Korn's type
    Chipot, Michel
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 148 : 199 - 220
  • [10] Some Remarks on Korn Inequalities
    Alain DAMLAMIAN
    [J]. Chinese Annals of Mathematics,Series B, 2018, (02) : 335 - 344