Korn and Poincaré-Korn inequalities for functions with a small jump set

被引:0
|
作者
Filippo Cagnetti
Antonin Chambolle
Lucia Scardia
机构
[1] University of Sussex,Department of Mathematics
[2] CEREMADE,Department of Mathematics
[3] CNRS and Université Paris-Dauphine PSL,undefined
[4] Heriot-Watt University,undefined
来源
Mathematische Annalen | 2022年 / 383卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove a regularity and rigidity result for displacements in GSBDp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GSBD^p$$\end{document}, for every p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document} and any dimension n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}. We show that a displacement in GSBDp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GSBD^p$$\end{document} with a small jump set coincides with a W1,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,p}$$\end{document} function, up to a small set whose perimeter and volume are controlled by the size of the jump. This generalises to higher dimension a result of Conti, Focardi and Iurlano. A consequence of this is that such displacements satisfy, up to a small set, Poincaré-Korn and Korn inequalities. As an application, we deduce an approximation result which implies the existence of the approximate gradient for displacements in GSBDp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GSBD^p$$\end{document}.
引用
收藏
页码:1179 / 1216
页数:37
相关论文
共 50 条
  • [31] On Korn-Maxwell-Sobolev inequalities
    Gmeineder, Franz
    Spector, Daniel
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 502 (01)
  • [32] On Korn's inequalities in curvilinear coordinates
    Ciarlet, PG
    Mardare, S
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2001, 11 (08): : 1379 - 1391
  • [33] On Korn's inequalities in curvilinear coordinates
    Ciarlet, PG
    Mardare, S
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (04): : 337 - 343
  • [34] Weighted Korn inequalities in paraboloidal domains
    Nazarov, SA
    [J]. MATHEMATICAL NOTES, 1997, 62 (5-6) : 629 - 641
  • [35] Korn inequalities for shells with zero Gaussian curvature
    Grabovsky, Yury
    Harutyunyan, Davit
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (01): : 267 - 282
  • [36] The linear constraints in Poincare and Korn type inequalities
    Alessandrini, Giovanni
    Morassi, Antonino
    Rosset, Edi
    [J]. FORUM MATHEMATICUM, 2008, 20 (03) : 557 - 569
  • [37] Weighted Poincare and Korn inequalities for Holder α domains
    Acosta, G
    Durán, RG
    Lombardi, AL
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (04) : 387 - 400
  • [38] Korn's inequalities for generalized external cusps
    Acosta, Gabriel
    Ojea, Ignacio
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (17) : 4935 - 4950
  • [39] INEQUALITIES OF KORN AND FRIEDRICHS IN ELASTICITY AND POTENTIAL THEORY
    HORGAN, CO
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1975, 26 (02): : 155 - 164
  • [40] Korn's inequalities for thin periodic structures
    Zhikov, V.V.
    Pastukhova, S.E.
    [J]. Doklady Akademii Nauk, 2003, 388 (05) : 588 - 592