Analysis of Fractional Order-Adaptive Systems Represented by Error Model 1 Using a Fractional-Order Gradient Approach

被引:0
|
作者
Sanchez-Rivero, Maibeth [1 ]
Duarte-Mermoud, Manuel A. [2 ]
Travieso-Torres, Juan Carlos [3 ]
Orchard, Marcos E. [1 ]
Ceballos-Benavides, Gustavo [2 ]
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Elect Engn, Av Tupper 2007, Santiago 8370451, Reg Metropolita, Chile
[2] Univ Cent Chile, Fac Ingn & Arquitectura, Ave Santa Isabel 1186, Santiago 8330601, Reg Metropolita, Chile
[3] Univ Santiago Chile, Fac Tecnol, Dept Tecnol Ind, Ave El Belloto 3735, Santiago 9170125, Reg Metropolita, Chile
关键词
fractional-order calculus (FOC); fractional-order adaptive control (FOAC); steepest descend gradient (SDG); fractional-order steepest descend gradient (FOSDG); LYAPUNOV FUNCTIONS; NONLINEAR-SYSTEMS; STABILITY;
D O I
10.3390/math12203212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In adaptive control, error models use system output error and adaptive laws to update controller parameters for control or identification tasks. Fractional-order calculus, involving non-integer-order derivatives and integrals, is increasingly important for modeling, estimation, and control due to its ability to generalize classical methods and offer improved robustness to disturbances. This paper addresses the gap in the literature where fractional-order gradient methods have not yet been extensively applied in identification and adaptive control schemes. We introduce a fractional-order error model with fractional-order gradient (FOEM1-FG), which integrates fractional gradient operators based on the Caputo fractional derivative. By using theoretical analysis and simulations, we confirm that FOEM1-FG maintains stability and ensures bounded output errors across a variety of input signals. Notably, the fractional gradient's performance improves as the order, beta, increases with beta>1, leading to faster convergence. Compared to existing integer-order methods, the proposed approach provides a more flexible and efficient solution in adaptive identification and control schemes. Our results show that FOEM1-FG offers superior stability and convergence characteristics, contributing new insights to the field of fractional calculus in adaptive systems.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Synchronization of Chaotic Fractional-order Systems via Fractional-Order Adaptive Controller
    Fayazi, Ali
    EMERGING SYSTEMS FOR MATERIALS, MECHANICS AND MANUFACTURING, 2012, 109 : 333 - 339
  • [2] Adaptive Fractional-order Unscented Kalman Filters for Nonlinear Fractional-order Systems
    Yue Miao
    Zhe Gao
    Chuang Yang
    International Journal of Control, Automation and Systems, 2022, 20 : 1283 - 1293
  • [3] Adaptive Fractional-order Unscented Kalman Filters for Nonlinear Fractional-order Systems
    Miao, Yue
    Gao, Zhe
    Yang, Chuang
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (04) : 1283 - 1293
  • [4] Fractional-Order Adaptive Fault Estimation for a Class of Nonlinear Fractional-Order Systems
    N'Doye, Ibrahima
    Laleg-Kirati, Taous-Meriem
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 3804 - 3809
  • [5] Adaptive output consensus of nonlinear fractional-order multi-agent systems: a fractional-order backstepping approach
    Shahvali, Milad
    Azarbahram, Ali
    Pariz, Naser
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2023, 52 (02) : 147 - 168
  • [6] Synchronization of the Chaotic Fractional-Order Genesio–Tesi Systems Using the Adaptive Sliding Mode Fractional-Order Controller
    Tabasi M.
    Balochian S.
    Balochian, Saeed (saeed.balochian@gmail.com), 2018, Springer Science and Business Media, LLC (29) : 15 - 21
  • [7] A computational approach with residual error analysis for the fractional-order biological population model
    Gokmen, Elcin
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2021, 15 (01): : 218 - 225
  • [8] Robust adaptive fractional-order observer for a class of fractional-order nonlinear systems with unknown parameters
    Chen, Kai
    Tang, Rongnian
    Li, Chuang
    Wei, Pengna
    NONLINEAR DYNAMICS, 2018, 94 (01) : 415 - 427
  • [9] Robust adaptive fractional-order observer for a class of fractional-order nonlinear systems with unknown parameters
    Kai Chen
    Rongnian Tang
    Chuang Li
    Pengna Wei
    Nonlinear Dynamics, 2018, 94 : 415 - 427
  • [10] Fractional-order ADRC framework for fractional-order parallel systems
    Li, Zong-yang
    Wei, Yi-heng
    Wang, Jiachang
    Li, Aug
    Wang, Jianli
    Wang, Yong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 1813 - 1818