Deep learning predicts tumor radiosensitivity from H&E images of HNSCC xenograft models

被引:0
|
作者
Ouadah, Cylia [1 ,2 ,3 ]
Michlikova, Sona [1 ,2 ,3 ]
Zwanenburg, Alex [1 ,2 ,4 ,5 ,6 ,7 ,8 ,9 ]
Yakimovich, Artur [10 ,11 ]
Borgeaud, Nathalie [1 ,2 ,4 ,5 ]
Koi, Lydia [1 ,2 ,3 ]
Khan, Safayat Mahmud [12 ,13 ,14 ]
Besso, Maria Jose [12 ,13 ,14 ]
Kurth, Ina [12 ,13 ,14 ,15 ]
Dietrich, Antje [1 ,2 ,4 ,5 ]
Krause, Mechthild [1 ,2 ,4 ,5 ,8 ,16 ]
Loeck, Steffen [1 ,2 ,4 ,5 ,8 ,16 ]
机构
[1] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, Fac Med, OncoRay Natl Ctr Radiat Res Oncol, Dresden, Germany
[2] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, Univ Hosp Carl Gustav Carus, Dresden, Germany
[3] Helmholtz Zentrum Dresden Rossendorf, Inst Radiooncol OncoRay, Dresden, Germany
[4] German Canc Consortium DKTK, Partner Site, Dresden, Germany
[5] German Canc Res Ctr, Heidelberg, Germany
[6] Natl Ctr Tumor Dis NCT, Partner Site Dresden, Dresden, Germany
[7] Tech Univ Dresden, Fac Med, Dresden, Germany
[8] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
[9] Helmholtz Zentrum Dresden Rossendorf HZDR, Helmholtz Assoc, Dresden, Germany
[10] Helmholtz Zentrum Dresden Rossendorf HZDR, Ctr Adv Syst Understanding CASUS, Gorlitz, Germany
[11] UCL, Div Med, Dept Renal Med, BIIG,Royal Free Hosp Campus, London, England
[12] German Canc Res Ctr, Div Radiooncol Radiobiol, Heidelberg, Germany
[13] Heidelberg Inst Radiat Oncol HIRO, Heidelberg, Germany
[14] Natl Ctr Radiat Res Oncol NCRO, Heidelberg, Germany
[15] German Canc Consortium DKTK, DKFZ, Core Ctr Heidelberg, Heidelberg, Germany
[16] Tech Univ Dresden, Dept Radiotherapy & Radiat Oncol, Fac Med, Dresden, Germany
关键词
radiosensitivity; CNN; histopathology; COMBINED RADIOTHERAPY; EGFR-INHIBITION;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
440
引用
收藏
页码:S5329 / S5333
页数:6
相关论文
共 50 条
  • [41] Usability of deep learning and H&E images predict disease outcome-emerging tool to optimize clinical trials
    Qaiser, Talha
    Lee, Ching-Yi
    Vandenberghe, Michel
    Yeh, Joe
    Gavrielides, Marios A.
    Hipp, Jason
    Scott, Marietta
    Reischl, Joachim
    NPJ PRECISION ONCOLOGY, 2022, 6 (01)
  • [42] Minimizing the intra- pathologist disagreement for tumor bud detection on H&E images using weakly supervised learning
    Tavolara, Thomas E.
    Chen, Wei
    Frankel, Wendy L.
    Gurcan, Metin N.
    Niazi, M. Khalid Khan
    MEDICAL IMAGING 2023, 2023, 12471
  • [43] Deep learning-based analysis of EGFR mutation prevalence in lung adenocarcinoma H&E whole slide images
    Park, Jun Hyeong
    Lim, June Hyuck
    Kim, Seonhwa
    Kim, Chul-Ho
    Choi, Jeong-Seok
    Lim, Jun Hyeok
    Kim, Lucia
    Chang, Jae Won
    Park, Dongil
    Lee, Myung-won
    Kim, Sup
    Park, Il-Seok
    Han, Seung Hoon
    Shin, Eun
    Roh, Jin
    Heo, Jaesung
    JOURNAL OF PATHOLOGY CLINICAL RESEARCH, 2024, 10 (06):
  • [44] Semantic segmentation to identify bladder layers from H&E Images
    Niazi, Muhammad Khalid Khan
    Yazgan, Enes
    Tavolara, Thomas E.
    Li, Wencheng
    Lee, Cheryl T.
    Parwani, Anil
    Gurcan, Metin N.
    DIAGNOSTIC PATHOLOGY, 2020, 15 (01)
  • [45] Predicting immunotherapy outcomes from H&E images in lung cancer
    Loo, Jessica
    Wang, Yang
    Wong, Pok Fai
    Wulczyn, Ellery
    Lai, Jeremy
    Cimermancic, Peter
    Steiner, David F.
    Weaver, Shamira S.
    CANCER RESEARCH, 2024, 84 (06)
  • [46] Deep-learning-based classification of desmoplastic reaction on H&E predicts poor prognosis in oesophageal squamous cell carcinoma
    Kouzu, Keita
    Nearchou, Ines P.
    Kajiwara, Yoshiki
    Tsujimoto, Hironori
    Lillard, Kate
    Kishi, Yoji
    Ueno, Hideki
    HISTOPATHOLOGY, 2022, 81 (02) : 255 - 263
  • [47] Predicting Molecular Subtype and Survival of Rhabdomyosarcoma Patients Using Deep Learning of H&E Images: A Report from the Children's Oncology Group
    Milewski, David
    Jung, Hyun
    Brown, G. Thomas
    Liu, Yanling
    Somerville, Ben
    Lisle, Curtis
    Ladanyi, Marc
    Rudzinski, Erin R.
    Choo-Wosoba, Hyoyoung
    Barkauskas, Donald A.
    Lo, Tammy
    Hall, David
    Linardic, Corinne M.
    Wei, Jun S.
    Chou, Hsien-Chao
    Skapek, Stephen X.
    Venkatramani, Rajkumar
    Bode, Peter K.
    Steinberg, Seth M.
    Zaki, George
    Kuznetsov, Igor B.
    Hawkins, Douglas S.
    Shern, Jack F.
    Collins, Jack
    Khan, Javed
    CLINICAL CANCER RESEARCH, 2023, 29 (02) : 364 - 378
  • [48] Computerized features of spatial arrangement of tumor-infiltrating lymphocytes from H&E images predicts survival and response to checkpoint inhibitors in gynecologic cancers.
    Esfahani, Sepideh Azarianpour
    Corredor, German
    Bera, Kaustav
    Fu, PingFu
    Joehlin-Price, Amy
    Mahdi, Haider
    Madabhushi, Anant
    JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (15)
  • [49] Nextflow pipeline for Visium and H&E data from patient-derived xenograft samples
    Domanskyi, Sergii
    Srivastava, Anuj
    Kaster, Jessica
    Li, Haiyin
    Herlyn, Meenhard
    Rubinstein, Jill C.
    Chuang, Jeffrey H.
    CELL REPORTS METHODS, 2024, 4 (05):
  • [50] Virtual H&E staining with single channel reflectance confocal microscopy images using pixel to pixel based deep learning
    Chen, Mengkun
    Fox, Matthew C.
    Reichenberg, Jason S.
    Lopes, Fabiana C. P. S.
    Sebastian, Katherine R.
    Markey, Mia K.
    Tunnell, James W.
    ADVANCED BIOMEDICAL AND CLINICAL DIAGNOSTIC AND SURGICAL GUIDANCE SYSTEMS XXII, 2024, 12831