Deep learning predicts tumor radiosensitivity from H&E images of HNSCC xenograft models

被引:0
|
作者
Ouadah, Cylia [1 ,2 ,3 ]
Michlikova, Sona [1 ,2 ,3 ]
Zwanenburg, Alex [1 ,2 ,4 ,5 ,6 ,7 ,8 ,9 ]
Yakimovich, Artur [10 ,11 ]
Borgeaud, Nathalie [1 ,2 ,4 ,5 ]
Koi, Lydia [1 ,2 ,3 ]
Khan, Safayat Mahmud [12 ,13 ,14 ]
Besso, Maria Jose [12 ,13 ,14 ]
Kurth, Ina [12 ,13 ,14 ,15 ]
Dietrich, Antje [1 ,2 ,4 ,5 ]
Krause, Mechthild [1 ,2 ,4 ,5 ,8 ,16 ]
Loeck, Steffen [1 ,2 ,4 ,5 ,8 ,16 ]
机构
[1] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, Fac Med, OncoRay Natl Ctr Radiat Res Oncol, Dresden, Germany
[2] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, Univ Hosp Carl Gustav Carus, Dresden, Germany
[3] Helmholtz Zentrum Dresden Rossendorf, Inst Radiooncol OncoRay, Dresden, Germany
[4] German Canc Consortium DKTK, Partner Site, Dresden, Germany
[5] German Canc Res Ctr, Heidelberg, Germany
[6] Natl Ctr Tumor Dis NCT, Partner Site Dresden, Dresden, Germany
[7] Tech Univ Dresden, Fac Med, Dresden, Germany
[8] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
[9] Helmholtz Zentrum Dresden Rossendorf HZDR, Helmholtz Assoc, Dresden, Germany
[10] Helmholtz Zentrum Dresden Rossendorf HZDR, Ctr Adv Syst Understanding CASUS, Gorlitz, Germany
[11] UCL, Div Med, Dept Renal Med, BIIG,Royal Free Hosp Campus, London, England
[12] German Canc Res Ctr, Div Radiooncol Radiobiol, Heidelberg, Germany
[13] Heidelberg Inst Radiat Oncol HIRO, Heidelberg, Germany
[14] Natl Ctr Radiat Res Oncol NCRO, Heidelberg, Germany
[15] German Canc Consortium DKTK, DKFZ, Core Ctr Heidelberg, Heidelberg, Germany
[16] Tech Univ Dresden, Dept Radiotherapy & Radiat Oncol, Fac Med, Dresden, Germany
关键词
radiosensitivity; CNN; histopathology; COMBINED RADIOTHERAPY; EGFR-INHIBITION;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
440
引用
收藏
页码:S5329 / S5333
页数:6
相关论文
共 50 条
  • [31] Machine learning enables prediction of ADC targets from whole slide H&E images
    McCaw, Zachary Ryan
    Shcherbina, Anna
    Shah, Yajas
    Tagari, Philip
    Koller, Daphne
    Probert, Christopher
    CANCER RESEARCH, 2024, 84 (06)
  • [32] AN EFFECTIVE DEEP LEARNING ARCHITECTURE COMBINATION FOR TISSUE MICROARRAY SPOTS CLASSIFICATION OF H&E STAINED COLORECTAL IMAGES
    Huu-Giao Nguyen
    Blank, Annika
    Lugli, Alessandro
    Zlobec, Inti
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1271 - 1274
  • [33] Analysis of H&E images using deep learning for the prediction of distant metastatic recurrence in early stage melanoma
    Moore, Michael
    Robinson, Eric
    Kulkarni, Prathamesh
    Gartrell, Robyn
    Pradhan, Jaya
    Rizk, Emanuelle
    Yang, Chen
    Balazs, Acs
    Phelps, Robert
    Ferringer, Tammie
    Chen, Andrew
    Rabadan, Raul
    Rohr, Bethany
    Horst, Basil
    Rimm, David
    Wang, Jing
    Saenger, Yvonne
    JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2019, 7
  • [34] Identification of the PDAC immunogenic subtype using deep learning with multi- scaled digital H&E images
    Si, Han
    Xu, Steven
    Muthuswamy, Anantharaman
    Liang, Ryan
    Sasser, Kate
    Hamadeh, Hisham K.
    Couto, Suzana
    Higgs, Brandon
    CANCER RESEARCH, 2022, 82 (12)
  • [35] Multimodal characterization of tertiary lymphoid structures identified via deep learning on digitized H&E images in NSCLC
    Beig, Niha
    Liu, Evan
    Schau, Geoffrey
    Amitai, Assaf
    Nabet, Barzin
    Jesudason, Rajiv
    Fuentes, Eloisa
    Koeppen, Hartmut
    Kaya, Sertan
    Patil, Namrata S.
    Srivastava, Minu K.
    Johnston, Robert
    Kozlowski, Cleopatra
    Giltnane, Jennifer
    Ruderman, Daniel
    CANCER RESEARCH, 2024, 84 (06)
  • [36] Towards Rapid Mycetoma Species Diagnosis: A Deep Learning Approach for Stain-Invariant Classification on H&E Images from Senegal
    Zinsou, Kpetchehoue Merveille Santi
    Diop, Cheikh Talibouya
    Diop, Idy
    Tsirikoglou, Apostolia
    Siddig, Emmanuel Edwar
    Sow, Doudou
    Ndiaye, Maodo
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT III, 2024, 15003 : 757 - 767
  • [37] Tumor-immune spatial interactions on NSCLC H&E slide images predicts immunotherapy response: Preliminary external validation
    Chung, L. I-Y.
    Li, H.
    Kim, L.
    Lee, S.
    Maghsoudi, O. Haji
    Hiremath, A.
    Lee, J.
    Kim, P. Haseok
    Lee, S.
    Yadav, M.
    Chuchuca, M. J. A.
    Um, T.
    Kim, Y.
    Hong, I.
    Kang, G.
    Cho, A.
    Cooper, L.
    Madabhushi, A.
    Braman, N.
    Chae, Y. K.
    ANNALS OF ONCOLOGY, 2024, 35 : S282 - S283
  • [38] A deep learning approach (AI) which accurately identifies breast tumor cells, tumor infiltrating lymphocytes (TILS) and fibroblasts from H&E slides
    da Silva, Luiz Augusto Zillmann
    Williams, Alistair R.
    Kubeyev, Aidan
    Giorni, Andrea
    Laurie, Jordan
    Sivasubramaniam, Prabu
    Foster, Matthew
    Griffiths, Matthew
    Asghar, Uzma
    CANCER RESEARCH, 2023, 83 (07)
  • [39] Semantic segmentation to identify bladder layers from H&E Images
    Muhammad Khalid Khan Niazi
    Enes Yazgan
    Thomas E. Tavolara
    Wencheng Li
    Cheryl T. Lee
    Anil Parwani
    Metin N. Gurcan
    Diagnostic Pathology, 15
  • [40] Usability of deep learning and H&E images predict disease outcome-emerging tool to optimize clinical trials
    Talha Qaiser
    Ching-Yi Lee
    Michel Vandenberghe
    Joe Yeh
    Marios A. Gavrielides
    Jason Hipp
    Marietta Scott
    Joachim Reischl
    npj Precision Oncology, 6