Deep learning predicts tumor radiosensitivity from H&E images of HNSCC xenograft models

被引:0
|
作者
Ouadah, Cylia [1 ,2 ,3 ]
Michlikova, Sona [1 ,2 ,3 ]
Zwanenburg, Alex [1 ,2 ,4 ,5 ,6 ,7 ,8 ,9 ]
Yakimovich, Artur [10 ,11 ]
Borgeaud, Nathalie [1 ,2 ,4 ,5 ]
Koi, Lydia [1 ,2 ,3 ]
Khan, Safayat Mahmud [12 ,13 ,14 ]
Besso, Maria Jose [12 ,13 ,14 ]
Kurth, Ina [12 ,13 ,14 ,15 ]
Dietrich, Antje [1 ,2 ,4 ,5 ]
Krause, Mechthild [1 ,2 ,4 ,5 ,8 ,16 ]
Loeck, Steffen [1 ,2 ,4 ,5 ,8 ,16 ]
机构
[1] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, Fac Med, OncoRay Natl Ctr Radiat Res Oncol, Dresden, Germany
[2] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, Univ Hosp Carl Gustav Carus, Dresden, Germany
[3] Helmholtz Zentrum Dresden Rossendorf, Inst Radiooncol OncoRay, Dresden, Germany
[4] German Canc Consortium DKTK, Partner Site, Dresden, Germany
[5] German Canc Res Ctr, Heidelberg, Germany
[6] Natl Ctr Tumor Dis NCT, Partner Site Dresden, Dresden, Germany
[7] Tech Univ Dresden, Fac Med, Dresden, Germany
[8] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
[9] Helmholtz Zentrum Dresden Rossendorf HZDR, Helmholtz Assoc, Dresden, Germany
[10] Helmholtz Zentrum Dresden Rossendorf HZDR, Ctr Adv Syst Understanding CASUS, Gorlitz, Germany
[11] UCL, Div Med, Dept Renal Med, BIIG,Royal Free Hosp Campus, London, England
[12] German Canc Res Ctr, Div Radiooncol Radiobiol, Heidelberg, Germany
[13] Heidelberg Inst Radiat Oncol HIRO, Heidelberg, Germany
[14] Natl Ctr Radiat Res Oncol NCRO, Heidelberg, Germany
[15] German Canc Consortium DKTK, DKFZ, Core Ctr Heidelberg, Heidelberg, Germany
[16] Tech Univ Dresden, Dept Radiotherapy & Radiat Oncol, Fac Med, Dresden, Germany
关键词
radiosensitivity; CNN; histopathology; COMBINED RADIOTHERAPY; EGFR-INHIBITION;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
440
引用
收藏
页码:S5329 / S5333
页数:6
相关论文
共 50 条
  • [21] USING DEEP LEARNING APPROACHES WITH MIF IMAGES TO ENHANCE T CELL IDENTIFICATION FOR TUMOR -AUTOMATION OF INFILTRATING LYMPHOCYTES (TILS) SCORING ON H&E IMAGES
    Azam, Abu Bakr
    Chang, Yu Qing
    Ker, Matthew Leong Tze
    Goh, Denise
    Lim, Jeffrey Chun Tatt
    Lau, Mai Chan
    Tan, Benedict
    Huang, Lihui
    Yeong, Joe
    Cai, Yiyu
    JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2021, 9 : A855 - A856
  • [22] Colorization of H&E stained tissue using Deep Learning
    Samsi, Siddharth
    Jones, Michael
    Kepner, Jeremy
    Reuther, Albert
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 640 - 643
  • [23] Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning
    Mingyu Chen
    Bin Zhang
    Win Topatana
    Jiasheng Cao
    Hepan Zhu
    Sarun Juengpanich
    Qijiang Mao
    Hong Yu
    Xiujun Cai
    npj Precision Oncology, 4
  • [24] Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning
    Chen, Mingyu
    Zhang, Bin
    Topatana, Win
    Cao, Jiasheng
    Zhu, Hepan
    Juengpanich, Sarun
    Mao, Qijiang
    Yu, Hong
    Cai, Xiujun
    NPJ PRECISION ONCOLOGY, 2020, 4 (01)
  • [25] Tertiary Lymphoid Structures Evaluation Using Deep Learning on H&E Slide Images in Gastric Cancer
    Wang, Xin
    Zhang, Xiaoyan
    Sun, Hui
    Xu, Midie
    Huang, Dan
    Sheng, Weiqi
    LABORATORY INVESTIGATION, 2024, 104 (03) : S844 - S845
  • [26] Computational staining of tumor hypoxia from H&E images using convolutional neural networks
    Zaidi, Mark
    Cui, Haotian
    Wang, Bo
    Mckee, Trevor D.
    Wouters, Bradly G.
    CLINICAL CANCER RESEARCH, 2021, 27 (05)
  • [27] Molecular classification of endometrial cancer from H&E stained slide images using supervised deep learning: a proof of concept
    Aguirre Neira, Fabiana Ines
    Rodriguez, V. E.
    Legoburu, A. A.
    Llanos, A. R.
    Carrera Salas, R.
    Jimenez Bolance, O.
    Ferreres Pinas, J. C.
    Costa Trachsel, I.
    VIRCHOWS ARCHIV, 2024, 485 : S47 - S47
  • [28] Prediction of PD-L1 tumor positive score in lung squamous cell carcinoma with H&E staining images and deep learning
    Wang, Qiushi
    Deng, Xixiang
    Huang, Pan
    Ma, Qiang
    Zhao, Lianhua
    Feng, Yangyang
    Wang, Yiying
    Zhao, Yuan
    Chen, Yan
    Zhong, Peng
    He, Peng
    Ma, Mingrui
    Feng, Peng
    Xiao, Hualiang
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [29] Deep learning identifies oncogenic genetic alterations in BRAF and NTRK in H&E whole slide images from thyroid carcinomas
    Williams, M.
    Pelekanou, V.
    Hoehne, J.
    Zoete, J. D.
    Schmitz, A.
    Bal, T. A.
    Banerji, T.
    Ferrer, J.
    Bernard-Gauthier, V.
    Rudolph, M.
    Theron, M.
    Cabanillas, M. E.
    Lenga, M.
    Di Tomaso, E.
    ANNALS OF ONCOLOGY, 2022, 33 (07) : S1296 - S1296
  • [30] Pan-cancer analysis of tumor microenvironment using deep learning-based cancer stroma and immune profiling in H&E images
    Paeng, Kyunghyun
    Jung, Geunyoung
    Lee, Sarah
    Cho, Soo Youn
    Cho, Eun Yoon
    Song, Sang Yong
    CANCER RESEARCH, 2019, 79 (13)