Deep learning predicts tumor radiosensitivity from H&E images of HNSCC xenograft models

被引:0
|
作者
Ouadah, Cylia [1 ,2 ,3 ]
Michlikova, Sona [1 ,2 ,3 ]
Zwanenburg, Alex [1 ,2 ,4 ,5 ,6 ,7 ,8 ,9 ]
Yakimovich, Artur [10 ,11 ]
Borgeaud, Nathalie [1 ,2 ,4 ,5 ]
Koi, Lydia [1 ,2 ,3 ]
Khan, Safayat Mahmud [12 ,13 ,14 ]
Besso, Maria Jose [12 ,13 ,14 ]
Kurth, Ina [12 ,13 ,14 ,15 ]
Dietrich, Antje [1 ,2 ,4 ,5 ]
Krause, Mechthild [1 ,2 ,4 ,5 ,8 ,16 ]
Loeck, Steffen [1 ,2 ,4 ,5 ,8 ,16 ]
机构
[1] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, Fac Med, OncoRay Natl Ctr Radiat Res Oncol, Dresden, Germany
[2] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, Univ Hosp Carl Gustav Carus, Dresden, Germany
[3] Helmholtz Zentrum Dresden Rossendorf, Inst Radiooncol OncoRay, Dresden, Germany
[4] German Canc Consortium DKTK, Partner Site, Dresden, Germany
[5] German Canc Res Ctr, Heidelberg, Germany
[6] Natl Ctr Tumor Dis NCT, Partner Site Dresden, Dresden, Germany
[7] Tech Univ Dresden, Fac Med, Dresden, Germany
[8] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
[9] Helmholtz Zentrum Dresden Rossendorf HZDR, Helmholtz Assoc, Dresden, Germany
[10] Helmholtz Zentrum Dresden Rossendorf HZDR, Ctr Adv Syst Understanding CASUS, Gorlitz, Germany
[11] UCL, Div Med, Dept Renal Med, BIIG,Royal Free Hosp Campus, London, England
[12] German Canc Res Ctr, Div Radiooncol Radiobiol, Heidelberg, Germany
[13] Heidelberg Inst Radiat Oncol HIRO, Heidelberg, Germany
[14] Natl Ctr Radiat Res Oncol NCRO, Heidelberg, Germany
[15] German Canc Consortium DKTK, DKFZ, Core Ctr Heidelberg, Heidelberg, Germany
[16] Tech Univ Dresden, Dept Radiotherapy & Radiat Oncol, Fac Med, Dresden, Germany
关键词
radiosensitivity; CNN; histopathology; COMBINED RADIOTHERAPY; EGFR-INHIBITION;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
440
引用
收藏
页码:S5329 / S5333
页数:6
相关论文
共 50 条
  • [1] Deep Learning Models Differentiate Tumor Grades from H&E Stained Histology Sections
    Khoshdeli, Mina
    Borowsky, Alexander
    Parvin, Bahram
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 620 - 623
  • [2] Deep learning predicts patients' outcome and mutations from H&E slides in gastrointestinal stromal tumor (GIST)
    Italiano, A.
    Fu, Y.
    Karanian, M.
    Perret, R.
    Camara, A.
    Le Loarer, F.
    Jean-Denis, M.
    Hostein, I.
    Michot, A.
    Ducimetiere, F.
    Giraud, A.
    Courreges, J-B.
    Courtet, K.
    Laizet, Y.
    Du Terrail, J. O.
    Schmauch, B.
    Maussion, C.
    Blay, J-Y.
    Coindre, J. M.
    ANNALS OF ONCOLOGY, 2022, 33 (07) : S1225 - S1226
  • [3] Comparison of Deep Learning Architectures for H&E Histopathology Images
    Sun, Jiamei
    Binder, Alexander
    2017 IEEE CONFERENCE ON BIG DATA AND ANALYTICS (ICBDA), 2017, : 43 - 48
  • [4] Advanced Deep Learning for Segmentation of Cancer Tissues from H&E Images
    Ochi, Mieko
    Komura, Daisuke
    Ushiku, Tetsuo
    Onoyama, Takumi
    Ishikawa, Shumpei
    CANCER SCIENCE, 2025, 116 : 384 - 384
  • [5] Prediction of distant melanoma recurrence from primary tumor digital H&E images using deep learning.
    Robinson, Eric
    Kulkarni, Prathamesh M.
    Pradhan, Jaya Sarin
    Gartrell, Robyn Denise
    Yang, Chen
    Rizk, Emanuelle M.
    Acs, Balazs
    Rohr, Bethany
    Phelps, Robert
    Ferringer, Tammie
    Horst, Basil
    Rimm, David L.
    Wang, Jing
    Saenger, Yvonne M.
    JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (15)
  • [6] Deep Learning Classifier to Predict Cardiac Failure from Whole Slide H&E Images
    Nirschl, Jeffrey
    Janowczyk, Andrew
    Peyster, Eliot
    Frank, Renee
    Margulies, Kenneth
    Feldman, Michael
    Madabhushi, Anant
    MODERN PATHOLOGY, 2017, 30 : 532A - 533A
  • [7] Comparison of deep learning models for digital H&E staining from unpaired label-free multispectral microscopy images
    Salido, Jesus
    Vallez, Noelia
    Gonzalez-Lopez, Lucia
    Deniz, Oscar
    Bueno, Gloria
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 235
  • [8] AUTOMATIC NUCLEI SEGMENTATION IN H&E PAINTED HISTOPATHOLOGICAL IMAGES WITH DEEP LEARNING
    Yildirim, Zeynep
    Samet, Refik
    PROCEEDINGS OF THE7TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL II, 2020, : 368 - 370
  • [9] Cell cycle arrest status predicted from H&E stained images using deep learning
    Aigner, Christina
    Reichholf, Brian
    Emschwiller, Maxime
    Pezer, Marija
    Winterhoff, Tobias
    Schallenberg, Simon
    Krupar, Rosemarie
    Ruff, Lukas
    Ruane, Sharon
    Alber, Maximilian
    Klauschen, Frederick
    Trapani, Francesca
    CANCER RESEARCH, 2023, 83 (07)
  • [10] Deep Learning Identifies FGFR Alterations from H&E Whole Slide Images in Bladder Cancer
    Och, Josh
    Osinski, Boleslaw
    Ingale, Kshitij
    Willis, Caleb
    Joshi, Rohan
    Beaubier, Nike
    Stumpe, Martin
    LABORATORY INVESTIGATION, 2023, 103 (03) : S783 - S784