CS U-NET: A Medical Image Segmentation Method Integrating Spatial and Contextual Attention Mechanisms Based on U-NET

被引:0
|
作者
Zhang, Fanyang [1 ]
Fan, Zhang [1 ]
机构
[1] Shanghai Univ Engn Sci, Lab Intelligent Control & Robot, Shanghai, Peoples R China
关键词
CBAM; deep learning; medical image segmentation; Swin transformer; U-net;
D O I
10.1002/ima.70072
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Medical image segmentation is a crucial process in medical image analysis, with convolutional neural network (CNN)-based methods achieving notable success in recent years. Among these, U-Net has gained widespread use due to its simple yet effective architecture. However, CNNs still struggle to capture global, long-range semantic information. To address this limitation, we present CS U-NET, a novel method built upon Swin-U-Net, which integrates spatial and contextual attention mechanisms. This hybrid approach combines the strengths of both transformers and U-Net architectures to enhance segmentation performance. In this framework, tokenized image patches are processed through a transformer-based U-shaped encoder-decoder, enabling the learning of both local and global semantic features via skip connections. Our method achieves a Dice Similarity Coefficient of 78.64% and a 95% Hausdorff distance of 21.25 on the Synapse multiorgan segmentation dataset, outperforming Trans-U-Net and other state-of-the-art U-Net variants by 4% and 6%, respectively. The experimental results highlight the significant improvements in prediction accuracy and edge detail preservation provided by our approach.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] DRLSU-Net: Level set with U-Net for medical image segmentation
    Wang, Xiaofeng
    Liu, Jiashan
    Yang, Rentao
    Wu, Zhize
    Sun, Lingma
    Zou, Le
    DIGITAL SIGNAL PROCESSING, 2025, 157
  • [42] Rethinking the unpretentious U-net for medical ultrasound image segmentation
    Chen, Gongping
    Li, Lei
    Zhang, Jianxun
    Dai, Yu
    PATTERN RECOGNITION, 2023, 142
  • [43] Design of Superpiexl U-Net Network for Medical Image Segmentation
    Wang H.
    Liu H.
    Guo Q.
    Deng K.
    Zhang C.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (06): : 1007 - 1017
  • [44] BCU-Net: Bridging ConvNeXt and U-Net for medical image segmentation
    Zhang, Hongbin
    Zhong, Xiang
    Li, Guangli
    Liu, Wei
    Liu, Jiawei
    Ji, Donghong
    Li, Xiong
    Wu, Jianguo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 159
  • [45] Medical Ultrasound Image Segmentation Using U-Net Architecture
    Shereena, V. B.
    Raju, G.
    ADVANCES IN COMPUTING AND DATA SCIENCES (ICACDS 2022), PT I, 2022, 1613 : 361 - 372
  • [46] Modified Double U-Net Architecture for Medical Image Segmentation
    Deb, Sagar Deep
    Jha, Rajib Kumar
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2023, 7 (02) : 151 - 162
  • [47] CFU-Net: A Coarse-Fine U-Net With Multilevel Attention for Medical Image Segmentation
    Yin, Haitao
    Shao, Yudong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [48] An improved U-net based retinal vessel image segmentation method
    Ren, Kan
    Chang, Longdan
    Wan, Minjie
    Gu, Guohua
    Chen, Qian
    HELIYON, 2022, 8 (10)
  • [49] Contextual Attention Network: Transformer Meets U-Net
    Azad, Reza
    Heidari, Moein
    Wu, Yuli
    Merhof, Dorit
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2022, 2022, 13583 : 377 - 386
  • [50] Multi-Convolutional Channel Residual Spatial Attention U-Net for Industrial and Medical Image Segmentation
    Chen, Haoyu
    Kim, Kyungbaek
    IEEE ACCESS, 2024, 12 : 76089 - 76101