An improved U-net based retinal vessel image segmentation method

被引:10
|
作者
Ren, Kan [1 ]
Chang, Longdan [1 ]
Wan, Minjie [1 ]
Gu, Guohua [1 ]
Chen, Qian [1 ]
机构
[1] Nanjing Univ Sci & Technol, Jiangsu Key Lab Spectral Imaging & Intelligent Sen, Nanjing 210094, Peoples R China
关键词
Retinal vessel segmentation; Deep learning; Bi-FPN; U-net; BLOOD-VESSELS; RISK;
D O I
10.1016/j.heliyon.2022.e11187
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diabetic retinopathy is not just the most common complication of diabetes but also the leading cause of adult blindness. Currently, doctors determine the cause of diabetic retinopathy primarily by diagnosing fundus images. Large-scale manual screening is difficult to achieve for retinal health screen. In this paper, we proposed an improved U-net network for segmenting retinal vessels. Firstly, due to the lack of retinal data, pre-processing of the raw data is required. The data processed by grayscale transformation, normalization, CLAHE, gamma transformation. Data augmentation can prevent overfitting in the training process. Secondly, the basic network structure model U-net is built, and the Bi-FPN network is fused based on U-net. Datasets from a public challenge are used to evaluate the performance of the proposed method, which is able to detect vessel SP of 0.8604, SE of 0.9767, ACC of 0.9651, and AUC of 0.9787.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] An improved method for retinal vessel segmentation in U-Net
    Li, Chunyang
    Li, Zhigang
    Yu, Fusheng
    Liu, Weikang
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024,
  • [2] A retinal vessel segmentation method based improved U-Net model
    Sun, Kun
    Chen, Yang
    Chao, Yi
    Geng, Jiameng
    Chen, Yinsheng
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 82
  • [3] Retinal Vessel Segmentation Method Based on Improved Deep U-Net
    Cai, Yiheng
    Li, Yuanyuan
    Gao, Xurong
    Guo, Yajun
    [J]. BIOMETRIC RECOGNITION (CCBR 2019), 2019, 11818 : 321 - 328
  • [4] Retinal Vessel Segmentation Method Based on Improved U-NET Network
    Chang, Longdan
    Ren, Kan
    Wan, Minjie
    Chen, Qian
    [J]. AOPC 2021: NOVEL TECHNOLOGIES AND INSTRUMENTS FOR ASTRONOMICAL MULTI-BAND OBSERVATIONS, 2021, 12069
  • [5] Improvement of Retinal Vessel Segmentation Method Based on U-Net
    Wang, Ning
    Li, Kefeng
    Zhang, Guangyuan
    Zhu, Zhenfang
    Wang, Peng
    [J]. ELECTRONICS, 2023, 12 (02)
  • [6] Fundus Retinal Vessels Image Segmentation Method Based on Improved U-Net
    Han, J.
    Wang, Y.
    Gong, H.
    [J]. IRBM, 2022, 43 (06) : 628 - 639
  • [7] The study of retinal vessel segmentation based on improved U-net algorithm
    Sheni, Tongping
    Menchita, Dumlao
    [J]. 2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 518 - 522
  • [8] Automatic Retinal Vessel Segmentation Based on an Improved U-Net Approach
    Huang, Zihe
    Fang, Ying
    Huang, He
    Xu, Xiaomei
    Wang, Jiwei
    Lai, Xiaobo
    [J]. SCIENTIFIC PROGRAMMING, 2021, 2021
  • [9] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    [J]. IEEE ACCESS, 2024, 12 : 534 - 551
  • [10] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    [J]. IEEE Access, 2024, 12 : 534 - 551