Automatic Retinal Vessel Segmentation Based on an Improved U-Net Approach

被引:11
|
作者
Huang, Zihe [1 ]
Fang, Ying [1 ]
Huang, He [1 ]
Xu, Xiaomei [1 ]
Wang, Jiwei [2 ]
Lai, Xiaobo [1 ]
机构
[1] Zhejiang Chinese Med Univ, Sch Med Technol & Informat Engn, Hangzhou, Peoples R China
[2] 73th Grp Army Hosp PLA, Dept Informat, Xiamen, Peoples R China
基金
中国国家自然科学基金;
关键词
BLOOD-VESSELS; IMAGES; NETWORK;
D O I
10.1155/2021/5520407
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Retinal blood vessels are the only deep microvessels in the blood circulation system that can be observed directly and noninvasively, providing us with a means of observing vascular pathologies. Cardiovascular and cerebrovascular diseases, such as glaucoma and diabetes, can cause structural changes in the retinal microvascular network. Therefore, the study of effective retinal vessel segmentation methods is of great significance for the early diagnosis of cardiovascular diseases and the vascular network's quantitative results. This paper proposes an automatic retinal vessel segmentation method based on an improved U-Net network. Firstly, the image patches are rotated to amplify the image data, and then, the RGB fundus image is preprocessed by normalization. Secondly, after the improved U-Net model is constructed with 23 convolutional layers, 4 pooling layers, 4 upsampling layers, 2 dropout layers, and Squeeze and Excitation (SE) block, the extracted image patches are utilized for training the model. Finally, the fundus images are segmented through the trained model to achieve precise extraction of retinal blood vessels. According to experimental results, the accuracy of 0.9701, 0.9683, and 0.9698, sensitivity of 0.8011, 0.6329, and 0.7478, specificity of 0.9849, 0.9967, and 0.9895, F1-Score of 0.8099, 0.8049, and 0.8013, and area under the curve (AUC) of 0.8895, 0.8845, and 0.8686 were achieved on DRIVE, STARE, and HRF databases, respectively, which is better than most classical algorithms.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] An improved method for retinal vessel segmentation in U-Net
    Li, Chunyang
    Li, Zhigang
    Yu, Fusheng
    Liu, Weikang
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024,
  • [2] A retinal vessel segmentation method based improved U-Net model
    Sun, Kun
    Chen, Yang
    Chao, Yi
    Geng, Jiameng
    Chen, Yinsheng
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 82
  • [3] An improved U-net based retinal vessel image segmentation method
    Ren, Kan
    Chang, Longdan
    Wan, Minjie
    Gu, Guohua
    Chen, Qian
    [J]. HELIYON, 2022, 8 (10)
  • [4] The study of retinal vessel segmentation based on improved U-net algorithm
    Sheni, Tongping
    Menchita, Dumlao
    [J]. 2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 518 - 522
  • [5] Retinal Vessel Segmentation Method Based on Improved U-NET Network
    Chang, Longdan
    Ren, Kan
    Wan, Minjie
    Chen, Qian
    [J]. AOPC 2021: NOVEL TECHNOLOGIES AND INSTRUMENTS FOR ASTRONOMICAL MULTI-BAND OBSERVATIONS, 2021, 12069
  • [6] Retinal Vessel Segmentation Method Based on Improved Deep U-Net
    Cai, Yiheng
    Li, Yuanyuan
    Gao, Xurong
    Guo, Yajun
    [J]. BIOMETRIC RECOGNITION (CCBR 2019), 2019, 11818 : 321 - 328
  • [7] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    [J]. IEEE ACCESS, 2024, 12 : 534 - 551
  • [8] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    [J]. IEEE Access, 2024, 12 : 534 - 551
  • [9] Two-Stage Retinal Vessel Segmentation Based on Improved U-Net
    Cai Qianhong
    Liu Yuhong
    Zhang Rongfen
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (16)
  • [10] Factorized U-net for Retinal Vessel Segmentation
    Gurrola-Ramos, Javier
    Dalmau, Oscar
    Alarcon, Teresa
    [J]. PATTERN RECOGNITION, MCPR 2022, 2022, 13264 : 181 - 190