A retinal vessel segmentation method based improved U-Net model

被引:11
|
作者
Sun, Kun [1 ,2 ]
Chen, Yang [1 ,2 ]
Chao, Yi [1 ,2 ]
Geng, Jiameng [1 ,2 ]
Chen, Yinsheng [1 ,2 ]
机构
[1] Harbin Univ Sci & Technol, Higher Educ Key Lab Measuring & Control Technol &, Harbin, Peoples R China
[2] Harbin Univ Sci & Technol, Natl Expt Teaching Demonstrat Ctr Measurement & Co, Harbin, Peoples R China
关键词
Attention; Medical image segmentation; Retinal vessel segmentation; Series deformable convolution; NETWORK; DELINEATION;
D O I
10.1016/j.bspc.2023.104574
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
There are two problems in retinal blood vessel segmentation, which are the insufficient segmentation of small vessels due to the complex curvature morphology of blood vessels and the segmentation difficulty of blood vessels due to uneven brightness background of lesion fundus images. To solve the problems, a series deformable convolution structure is proposed in this paper, which could improve the adaptive features extraction ability to the blood vessels with various shapes and sizes, enhance feature transmissions and alleviate exploding gradients. On this basis, a retinal vessel segmentation method with series deformable convolution and attention mechanism based on U-Net structure (SDAU-Net) is proposed. In SDAU-Net, the convolution module in U-Net is replaced by series deformable convolution module, the lightweight attention module and dual attention module are applied in the decoder part, which effectively improve the U-Net feature extraction ability for the small vessels with complex morphology and the retinopathy images. To verify the SDAU-Net effect, the comparative experiments are conducted on datasets of DRIVE, STARE, CHASE_DB1 and IOSTAR. The results show that SDAU-Net is superior to comparative methods in accuracy. The Se and Acc on the DRIVE and STARE are 0.8293, 0.9675, 0.8973 and 0.9833 respectively, which indicate that SDAU-Net has more advantages in small vessel segmentation and lesion images. To verify the generalization and extendibility, cross-dataset and cross-modality experiments are conducted on DRIVE, STARE and IOSTAR, the results demonstrate outstanding generalization and extendibility of SDAU-Net.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] An improved method for retinal vessel segmentation in U-Net
    Li, Chunyang
    Li, Zhigang
    Yu, Fusheng
    Liu, Weikang
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024,
  • [2] An improved U-net based retinal vessel image segmentation method
    Ren, Kan
    Chang, Longdan
    Wan, Minjie
    Gu, Guohua
    Chen, Qian
    [J]. HELIYON, 2022, 8 (10)
  • [3] Retinal Vessel Segmentation Method Based on Improved Deep U-Net
    Cai, Yiheng
    Li, Yuanyuan
    Gao, Xurong
    Guo, Yajun
    [J]. BIOMETRIC RECOGNITION (CCBR 2019), 2019, 11818 : 321 - 328
  • [4] Retinal Vessel Segmentation Method Based on Improved U-NET Network
    Chang, Longdan
    Ren, Kan
    Wan, Minjie
    Chen, Qian
    [J]. AOPC 2021: NOVEL TECHNOLOGIES AND INSTRUMENTS FOR ASTRONOMICAL MULTI-BAND OBSERVATIONS, 2021, 12069
  • [5] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    [J]. IEEE ACCESS, 2024, 12 : 534 - 551
  • [6] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    [J]. IEEE Access, 2024, 12 : 534 - 551
  • [7] Improvement of Retinal Vessel Segmentation Method Based on U-Net
    Wang, Ning
    Li, Kefeng
    Zhang, Guangyuan
    Zhu, Zhenfang
    Wang, Peng
    [J]. ELECTRONICS, 2023, 12 (02)
  • [8] The study of retinal vessel segmentation based on improved U-net algorithm
    Sheni, Tongping
    Menchita, Dumlao
    [J]. 2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 518 - 522
  • [9] Automatic Retinal Vessel Segmentation Based on an Improved U-Net Approach
    Huang, Zihe
    Fang, Ying
    Huang, He
    Xu, Xiaomei
    Wang, Jiwei
    Lai, Xiaobo
    [J]. SCIENTIFIC PROGRAMMING, 2021, 2021
  • [10] Two-Stage Retinal Vessel Segmentation Based on Improved U-Net
    Cai Qianhong
    Liu Yuhong
    Zhang Rongfen
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (16)