CS U-NET: A Medical Image Segmentation Method Integrating Spatial and Contextual Attention Mechanisms Based on U-NET

被引:0
|
作者
Zhang, Fanyang [1 ]
Fan, Zhang [1 ]
机构
[1] Shanghai Univ Engn Sci, Lab Intelligent Control & Robot, Shanghai, Peoples R China
关键词
CBAM; deep learning; medical image segmentation; Swin transformer; U-net;
D O I
10.1002/ima.70072
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Medical image segmentation is a crucial process in medical image analysis, with convolutional neural network (CNN)-based methods achieving notable success in recent years. Among these, U-Net has gained widespread use due to its simple yet effective architecture. However, CNNs still struggle to capture global, long-range semantic information. To address this limitation, we present CS U-NET, a novel method built upon Swin-U-Net, which integrates spatial and contextual attention mechanisms. This hybrid approach combines the strengths of both transformers and U-Net architectures to enhance segmentation performance. In this framework, tokenized image patches are processed through a transformer-based U-shaped encoder-decoder, enabling the learning of both local and global semantic features via skip connections. Our method achieves a Dice Similarity Coefficient of 78.64% and a 95% Hausdorff distance of 21.25 on the Synapse multiorgan segmentation dataset, outperforming Trans-U-Net and other state-of-the-art U-Net variants by 4% and 6%, respectively. The experimental results highlight the significant improvements in prediction accuracy and edge detail preservation provided by our approach.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Boundary Aware U-Net for Medical Image Segmentation
    Mohammad D. Alahmadi
    Arabian Journal for Science and Engineering, 2023, 48 : 9929 - 9940
  • [22] A COVID-19 medical image Segmentation method based on U-NET
    Wang, Chao
    Zhu, Jin
    Snu, Kai
    Li, Dayi
    Wang, Zaoji
    Yuan, Huining
    IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SYSTEMS SCIENCE AND ENGINEERING (IEEE RASSE 2021), 2021,
  • [23] Improved U-Net based insulator image segmentation method based on attention mechanism
    Han Gujing
    Zhang Min
    Wu Wenzhao
    He Min
    Liu Kaipei
    Qin Liang
    Liu Xia
    ENERGY REPORTS, 2021, 7 : 210 - 217
  • [24] Bilateral U-Net semantic segmentation with spatial attention mechanism
    Zhao Guangzhe
    Zhang Yimeng
    Maoning Ge
    Yu Min
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (02) : 297 - 307
  • [25] Tooth CT Image Segmentation Method Based on the U-Net Network and Attention Module
    Tao, Sha
    Wang, Zhenfeng
    Computational and Mathematical Methods in Medicine, 2022, 2022
  • [26] OAU-net: Outlined Attention U-net for biomedical image segmentation
    Song, Haojie
    Wang, Yuefei
    Zeng, Shijie
    Guo, Xiaoyan
    Li, Zheheng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [27] A Method of Steel Bar Image Segmentation Based on Multi-Attention U-Net
    Shi, Jie
    Wu, Kunpeng
    Yang, Chaolin
    Deng, Nenghui
    IEEE ACCESS, 2021, 9 : 13304 - 13313
  • [28] Tooth CT Image Segmentation Method Based on the U-Net Network and Attention Module
    Tao, Sha
    Wang, Zhenfeng
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [29] Medical image segmentation based on state transition algorithm and U-net
    Zhou, Xiaojun
    Geng, Chuanyu
    Yang, Chunhua
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2023, 54 (04): : 1358 - 1369
  • [30] A Densely Connected Network Based on U-Net for Medical Image Segmentation
    Yang, Zhenzhen
    Xu, Pengfei
    Yang, Yongpeng
    Bao, Bing-Kun
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (03)